一种基于GA-BFO的室内智能定位算法

Z. Lan, Ma Hongmei, S. Changyin, Wu Xinqiao
{"title":"一种基于GA-BFO的室内智能定位算法","authors":"Z. Lan, Ma Hongmei, S. Changyin, Wu Xinqiao","doi":"10.1109/ICISCE.2016.261","DOIUrl":null,"url":null,"abstract":"The error caused by nonline-of-sight (NLOS) is main factor affecting the indoor wireless positioning accuracy. In order to eliminate the NLOS error and improve the positioning accuracy, genetic algorithm, genetic algorithm-Hill Climbing algorithm and genetic algorithm-Bacteria Foraging Optimization algorithm are applied to time difference of arrival (TDOA) positioning optimization in this paper. Research results show genetic algorithm-Bacteria Foraging Optimization algorithm, combined global search with local search, has the best performance in terms of positioning accuracy and convergence speed. This method is better in eliminating the NLOS error and improving the performance of real-time positioning.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Indoor Intelligent Location Algorithm Based on GA-BFO\",\"authors\":\"Z. Lan, Ma Hongmei, S. Changyin, Wu Xinqiao\",\"doi\":\"10.1109/ICISCE.2016.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The error caused by nonline-of-sight (NLOS) is main factor affecting the indoor wireless positioning accuracy. In order to eliminate the NLOS error and improve the positioning accuracy, genetic algorithm, genetic algorithm-Hill Climbing algorithm and genetic algorithm-Bacteria Foraging Optimization algorithm are applied to time difference of arrival (TDOA) positioning optimization in this paper. Research results show genetic algorithm-Bacteria Foraging Optimization algorithm, combined global search with local search, has the best performance in terms of positioning accuracy and convergence speed. This method is better in eliminating the NLOS error and improving the performance of real-time positioning.\",\"PeriodicalId\":6882,\"journal\":{\"name\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2016.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

非线性视距引起的误差是影响室内无线定位精度的主要因素。为了消除NLOS误差,提高定位精度,本文将遗传算法、遗传算法-爬坡算法和遗传算法-细菌觅食优化算法应用于到达时间差(TDOA)定位优化。研究结果表明,将全局搜索与局部搜索相结合的遗传算法-细菌觅食优化算法在定位精度和收敛速度方面具有最佳性能。该方法较好地消除了NLOS误差,提高了实时定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Indoor Intelligent Location Algorithm Based on GA-BFO
The error caused by nonline-of-sight (NLOS) is main factor affecting the indoor wireless positioning accuracy. In order to eliminate the NLOS error and improve the positioning accuracy, genetic algorithm, genetic algorithm-Hill Climbing algorithm and genetic algorithm-Bacteria Foraging Optimization algorithm are applied to time difference of arrival (TDOA) positioning optimization in this paper. Research results show genetic algorithm-Bacteria Foraging Optimization algorithm, combined global search with local search, has the best performance in terms of positioning accuracy and convergence speed. This method is better in eliminating the NLOS error and improving the performance of real-time positioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信