加拿大南部阿萨巴斯卡油砂区派克和Jackfish油砂项目区储层概况

G. Baniak, E. M. Caddel, Kelly G. Kingsmith
{"title":"加拿大南部阿萨巴斯卡油砂区派克和Jackfish油砂项目区储层概况","authors":"G. Baniak, E. M. Caddel, Kelly G. Kingsmith","doi":"10.2118/193065-MS","DOIUrl":null,"url":null,"abstract":"\n The Lower Cretaceous McMurray Formation in western Canada has over 1.8 trillion barrels of bitumen resource in place. Due to the bitumen in its natural state having a very low API (6-12°) and corresponding high viscosity, traditional primary (pump jacks) and secondary (water flood) recovery techniques cannot be used. Instead, economic extraction of the bitumen occurs via surface mining and subsurface steam-assisted gravity drainage (SAGD). Using the Pike and Jackfish oil sands project areas as a case study, it will be shown that successful SAGD operations requires a thorough understanding of the depositional fabric and stratigraphic architecture of the reservoir.\n Within the study area, reservoir intervals in the form of cross-bedded sandstones and sandy inclined heterolithic strata (IHS) are present within both the middle and upper McMurray. Overlying the middle McMurray are upper McMurray parasequence cycles reflective of brackish bays and deltaic embayment deposits. In many areas, however, these parasequences are absent and instead substituted by fluvial channels with brackish water overprint. The facies within these fluvial channels are very similar in character to the those seen within the middle McMurray. To help progress our understanding of baffles and barriers to flow within these aforementioned reservoir facies, dip meter and seismic data are presented as data that can be used. From this, a better understanding of the complex interplay of facies and stratigraphic relationships can be made. More importantly, clearer insights into SAGD performance (pre- and post-steam) can also be achieved.\n Using the McMurray Formation as an underpinning, the wider implications of understanding fluvial sedimentation will be addressed by using reservoirs from the Middle East as examples. For example, many siliciclastic reservoirs in locations such as Kuwait (Wara Formation) and Iraq (Zubair Formation) are also influenced to a large degree by fluvial sedimentation. Not unlike SAGD, any successful secondary recovery techniques applied within these reservoirs will also require a detailed characterization of the channel stacking patterns and channel orientations prior to implementation.","PeriodicalId":11014,"journal":{"name":"Day 1 Mon, November 12, 2018","volume":" 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overview of Reservoir Deposits in the Pike and Jackfish Oil Sands Project Areas, Southern Athabasca Oil Sands, Canada\",\"authors\":\"G. Baniak, E. M. Caddel, Kelly G. Kingsmith\",\"doi\":\"10.2118/193065-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Lower Cretaceous McMurray Formation in western Canada has over 1.8 trillion barrels of bitumen resource in place. Due to the bitumen in its natural state having a very low API (6-12°) and corresponding high viscosity, traditional primary (pump jacks) and secondary (water flood) recovery techniques cannot be used. Instead, economic extraction of the bitumen occurs via surface mining and subsurface steam-assisted gravity drainage (SAGD). Using the Pike and Jackfish oil sands project areas as a case study, it will be shown that successful SAGD operations requires a thorough understanding of the depositional fabric and stratigraphic architecture of the reservoir.\\n Within the study area, reservoir intervals in the form of cross-bedded sandstones and sandy inclined heterolithic strata (IHS) are present within both the middle and upper McMurray. Overlying the middle McMurray are upper McMurray parasequence cycles reflective of brackish bays and deltaic embayment deposits. In many areas, however, these parasequences are absent and instead substituted by fluvial channels with brackish water overprint. The facies within these fluvial channels are very similar in character to the those seen within the middle McMurray. To help progress our understanding of baffles and barriers to flow within these aforementioned reservoir facies, dip meter and seismic data are presented as data that can be used. From this, a better understanding of the complex interplay of facies and stratigraphic relationships can be made. More importantly, clearer insights into SAGD performance (pre- and post-steam) can also be achieved.\\n Using the McMurray Formation as an underpinning, the wider implications of understanding fluvial sedimentation will be addressed by using reservoirs from the Middle East as examples. For example, many siliciclastic reservoirs in locations such as Kuwait (Wara Formation) and Iraq (Zubair Formation) are also influenced to a large degree by fluvial sedimentation. Not unlike SAGD, any successful secondary recovery techniques applied within these reservoirs will also require a detailed characterization of the channel stacking patterns and channel orientations prior to implementation.\",\"PeriodicalId\":11014,\"journal\":{\"name\":\"Day 1 Mon, November 12, 2018\",\"volume\":\" 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 12, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/193065-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193065-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

加拿大西部的下白垩纪McMurray组拥有超过1.8万亿桶的沥青资源。由于沥青在自然状态下具有非常低的API(6-12°)和相应的高粘度,传统的一次(泵千斤顶)和二次(水驱)开采技术无法使用。相反,通过地表开采和地下蒸汽辅助重力排水(SAGD)来经济地提取沥青。以Pike和Jackfish油砂项目区为例,研究表明,成功的SAGD作业需要对储层的沉积结构和地层结构有透彻的了解。在研究区内,McMurray中上段均存在以交错层状砂岩和砂质斜斜异质层(IHS)形式存在的储层。上麦克默里准层序旋回覆盖在麦克默里中部上,反映了微咸海湾和三角洲沉积。然而,在许多地区,这些准层序不存在,取而代之的是带有微咸水叠印的河流河道。这些河道内的相在性质上与麦克默里河中部的相非常相似。为了帮助我们进一步了解上述储层相中的挡板和流动障碍,倾角仪和地震数据被作为可以使用的数据。由此,可以更好地理解相和地层关系的复杂相互作用。更重要的是,还可以更清楚地了解SAGD性能(蒸汽前后)。以麦克默里组为基础,以中东的储层为例,阐述了理解河流沉积的更广泛含义。例如,在科威特(Wara组)和伊拉克(Zubair组)等地的许多硅屑储层也在很大程度上受到河流沉积的影响。与SAGD不同,在这些油藏中应用的任何成功的二次采油技术都需要在实施之前详细描述通道堆积模式和通道方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of Reservoir Deposits in the Pike and Jackfish Oil Sands Project Areas, Southern Athabasca Oil Sands, Canada
The Lower Cretaceous McMurray Formation in western Canada has over 1.8 trillion barrels of bitumen resource in place. Due to the bitumen in its natural state having a very low API (6-12°) and corresponding high viscosity, traditional primary (pump jacks) and secondary (water flood) recovery techniques cannot be used. Instead, economic extraction of the bitumen occurs via surface mining and subsurface steam-assisted gravity drainage (SAGD). Using the Pike and Jackfish oil sands project areas as a case study, it will be shown that successful SAGD operations requires a thorough understanding of the depositional fabric and stratigraphic architecture of the reservoir. Within the study area, reservoir intervals in the form of cross-bedded sandstones and sandy inclined heterolithic strata (IHS) are present within both the middle and upper McMurray. Overlying the middle McMurray are upper McMurray parasequence cycles reflective of brackish bays and deltaic embayment deposits. In many areas, however, these parasequences are absent and instead substituted by fluvial channels with brackish water overprint. The facies within these fluvial channels are very similar in character to the those seen within the middle McMurray. To help progress our understanding of baffles and barriers to flow within these aforementioned reservoir facies, dip meter and seismic data are presented as data that can be used. From this, a better understanding of the complex interplay of facies and stratigraphic relationships can be made. More importantly, clearer insights into SAGD performance (pre- and post-steam) can also be achieved. Using the McMurray Formation as an underpinning, the wider implications of understanding fluvial sedimentation will be addressed by using reservoirs from the Middle East as examples. For example, many siliciclastic reservoirs in locations such as Kuwait (Wara Formation) and Iraq (Zubair Formation) are also influenced to a large degree by fluvial sedimentation. Not unlike SAGD, any successful secondary recovery techniques applied within these reservoirs will also require a detailed characterization of the channel stacking patterns and channel orientations prior to implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信