基于欠采样k空间数据的多对比度Mr图像重建的深度展开神经网络

K. Pooja, Zaccharie Ramzi, G. R. Chaithya, P. Ciuciu
{"title":"基于欠采样k空间数据的多对比度Mr图像重建的深度展开神经网络","authors":"K. Pooja, Zaccharie Ramzi, G. R. Chaithya, P. Ciuciu","doi":"10.1109/ISBI52829.2022.9761583","DOIUrl":null,"url":null,"abstract":"Multi-contrast (MC) MR images are similar in structure and can leverage anatomical structure to perform joint reconstruction especially from a limited number of k-space data in the Compressed Sensing (CS) setting. However CS-based multi-contrast image reconstruction has shown limited performance in these highly accelerated regimes due to the use of hand-crafted group sparsity priors. Deep learning can improve outcomes by learning the joint prior across multiple weighting contrasts. In this work, we extend the primal-dual neural network (PDNet) in the multi-contrast sense. We propose a MC-PDNet architecture which takes full advantage of multi-contrast information. Using an in-house database consisting of images from T2TSE, T2*GRE and FLAIR contrasts acquired in 66 healthy volunteers, we performed a retrospective study from 4-fold under-sampled data. It was shown that MC-PDNet improves image quality by at least 1dB in PSNR for each contrast individually in comparison with PD-Net, U-Net and DISN-5B architectures.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":" 34","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MC-PDNet: Deep Unrolled Neural Network For Multi-Contrast Mr Image Reconstruction From Undersampled K-Space Data\",\"authors\":\"K. Pooja, Zaccharie Ramzi, G. R. Chaithya, P. Ciuciu\",\"doi\":\"10.1109/ISBI52829.2022.9761583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-contrast (MC) MR images are similar in structure and can leverage anatomical structure to perform joint reconstruction especially from a limited number of k-space data in the Compressed Sensing (CS) setting. However CS-based multi-contrast image reconstruction has shown limited performance in these highly accelerated regimes due to the use of hand-crafted group sparsity priors. Deep learning can improve outcomes by learning the joint prior across multiple weighting contrasts. In this work, we extend the primal-dual neural network (PDNet) in the multi-contrast sense. We propose a MC-PDNet architecture which takes full advantage of multi-contrast information. Using an in-house database consisting of images from T2TSE, T2*GRE and FLAIR contrasts acquired in 66 healthy volunteers, we performed a retrospective study from 4-fold under-sampled data. It was shown that MC-PDNet improves image quality by at least 1dB in PSNR for each contrast individually in comparison with PD-Net, U-Net and DISN-5B architectures.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\" 34\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多对比度(MC) MR图像在结构上相似,可以利用解剖结构进行关节重建,特别是在压缩感知(CS)设置中从有限数量的k空间数据中进行关节重建。然而,由于使用手工制作的群稀疏先验,基于cs的多对比度图像重建在这些高度加速的情况下表现出有限的性能。深度学习可以通过学习跨多个加权对比的联合先验来改善结果。在这项工作中,我们将原始对偶神经网络(PDNet)扩展到多对比度意义上。提出了一种充分利用多对比度信息的MC-PDNet结构。利用66名健康志愿者的T2TSE、T2*GRE和FLAIR对比图像组成的内部数据库,我们从4倍欠采样数据中进行了回顾性研究。研究表明,与PD-Net、U-Net和dis - 5b架构相比,MC-PDNet在每个对比度下的PSNR至少提高了1dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MC-PDNet: Deep Unrolled Neural Network For Multi-Contrast Mr Image Reconstruction From Undersampled K-Space Data
Multi-contrast (MC) MR images are similar in structure and can leverage anatomical structure to perform joint reconstruction especially from a limited number of k-space data in the Compressed Sensing (CS) setting. However CS-based multi-contrast image reconstruction has shown limited performance in these highly accelerated regimes due to the use of hand-crafted group sparsity priors. Deep learning can improve outcomes by learning the joint prior across multiple weighting contrasts. In this work, we extend the primal-dual neural network (PDNet) in the multi-contrast sense. We propose a MC-PDNet architecture which takes full advantage of multi-contrast information. Using an in-house database consisting of images from T2TSE, T2*GRE and FLAIR contrasts acquired in 66 healthy volunteers, we performed a retrospective study from 4-fold under-sampled data. It was shown that MC-PDNet improves image quality by at least 1dB in PSNR for each contrast individually in comparison with PD-Net, U-Net and DISN-5B architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信