状态相关时滞微分方程的全局Hopf分岔

Shangjiang Guo
{"title":"状态相关时滞微分方程的全局Hopf分岔","authors":"Shangjiang Guo","doi":"10.1142/s0218127423500748","DOIUrl":null,"url":null,"abstract":"We apply the [Formula: see text]-equivariant degree method to a Hopf bifurcation problem for functional differential equations with a state-dependent delay. The formal linearization of the system at a stationary state is extracted and translated into a bifurcation invariant by using the homotopy invariance of [Formula: see text]-equivariant degree. As a result, the local Hopf bifurcation is detected and the global continuation of periodic solutions is described.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Hopf Bifurcation of State-Dependent Delay Differential Equations\",\"authors\":\"Shangjiang Guo\",\"doi\":\"10.1142/s0218127423500748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the [Formula: see text]-equivariant degree method to a Hopf bifurcation problem for functional differential equations with a state-dependent delay. The formal linearization of the system at a stationary state is extracted and translated into a bifurcation invariant by using the homotopy invariance of [Formula: see text]-equivariant degree. As a result, the local Hopf bifurcation is detected and the global continuation of periodic solutions is described.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423500748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将[公式:见文]-等变次方法应用于具有状态相关时滞的泛函微分方程的Hopf分岔问题。利用[公式:见文]-等变度的同伦不变量,提取系统在稳态时的形式线性化,并将其转化为分岔不变量。结果,检测了局部Hopf分岔,描述了周期解的全局延拓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Hopf Bifurcation of State-Dependent Delay Differential Equations
We apply the [Formula: see text]-equivariant degree method to a Hopf bifurcation problem for functional differential equations with a state-dependent delay. The formal linearization of the system at a stationary state is extracted and translated into a bifurcation invariant by using the homotopy invariance of [Formula: see text]-equivariant degree. As a result, the local Hopf bifurcation is detected and the global continuation of periodic solutions is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信