{"title":"状态相关时滞微分方程的全局Hopf分岔","authors":"Shangjiang Guo","doi":"10.1142/s0218127423500748","DOIUrl":null,"url":null,"abstract":"We apply the [Formula: see text]-equivariant degree method to a Hopf bifurcation problem for functional differential equations with a state-dependent delay. The formal linearization of the system at a stationary state is extracted and translated into a bifurcation invariant by using the homotopy invariance of [Formula: see text]-equivariant degree. As a result, the local Hopf bifurcation is detected and the global continuation of periodic solutions is described.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Hopf Bifurcation of State-Dependent Delay Differential Equations\",\"authors\":\"Shangjiang Guo\",\"doi\":\"10.1142/s0218127423500748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the [Formula: see text]-equivariant degree method to a Hopf bifurcation problem for functional differential equations with a state-dependent delay. The formal linearization of the system at a stationary state is extracted and translated into a bifurcation invariant by using the homotopy invariance of [Formula: see text]-equivariant degree. As a result, the local Hopf bifurcation is detected and the global continuation of periodic solutions is described.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423500748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Hopf Bifurcation of State-Dependent Delay Differential Equations
We apply the [Formula: see text]-equivariant degree method to a Hopf bifurcation problem for functional differential equations with a state-dependent delay. The formal linearization of the system at a stationary state is extracted and translated into a bifurcation invariant by using the homotopy invariance of [Formula: see text]-equivariant degree. As a result, the local Hopf bifurcation is detected and the global continuation of periodic solutions is described.