N × 2潜在游戏中的平滑虚拟玩法

Brian Swenson, H. Poor
{"title":"N × 2潜在游戏中的平滑虚拟玩法","authors":"Brian Swenson, H. Poor","doi":"10.1109/IEEECONF44664.2019.9048995","DOIUrl":null,"url":null,"abstract":"The paper shows that smooth fictitious play converges to a neighborhood of a pure-strategy Nash equilibrium with probability 1 in almost all N × 2 (N-player, two-action) potential games. The neighborhood of convergence may be made arbitrarily small by taking the smoothing parameter to zero. Simple proof techniques are furnished by considering regular potential games.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"124 3","pages":"1739-1743"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Smooth Fictitious Play in N × 2 Potential Games\",\"authors\":\"Brian Swenson, H. Poor\",\"doi\":\"10.1109/IEEECONF44664.2019.9048995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper shows that smooth fictitious play converges to a neighborhood of a pure-strategy Nash equilibrium with probability 1 in almost all N × 2 (N-player, two-action) potential games. The neighborhood of convergence may be made arbitrarily small by taking the smoothing parameter to zero. Simple proof techniques are furnished by considering regular potential games.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"124 3\",\"pages\":\"1739-1743\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文证明了在几乎所有N × 2 (N人,双动作)潜在博弈中,光滑虚拟博弈收敛于概率为1的纯策略纳什均衡的邻域。通过取平滑参数为零,可以使收敛邻域任意小。通过考虑常规的潜在博弈,提供了简单的证明技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth Fictitious Play in N × 2 Potential Games
The paper shows that smooth fictitious play converges to a neighborhood of a pure-strategy Nash equilibrium with probability 1 in almost all N × 2 (N-player, two-action) potential games. The neighborhood of convergence may be made arbitrarily small by taking the smoothing parameter to zero. Simple proof techniques are furnished by considering regular potential games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信