用二重可成形变换求解偏积分微分方程

B. Ghazal, Rania Saadeh, Abdelilah K. Sedeeg
{"title":"用二重可成形变换求解偏积分微分方程","authors":"B. Ghazal, Rania Saadeh, Abdelilah K. Sedeeg","doi":"10.1155/2022/6280736","DOIUrl":null,"url":null,"abstract":"In this study, we present a new double integral transform called the double formable transform. Several properties and theorems related to existing conditions, partial derivatives, the double convolution theorem, and others are presented. Additionally, we use a convolution kernel to solve linear partial integro-differential equations (PIDE) by using the double formable transform. By solving numerous cases, the double formable transform’s ability to turn the PIDE into an algebraic equation that is simple to solve is demonstrated.","PeriodicalId":8218,"journal":{"name":"Appl. Comput. Intell. Soft Comput.","volume":"74 19","pages":"6280736:1-6280736:15"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving Partial Integro-Differential Equations via Double Formable Transform\",\"authors\":\"B. Ghazal, Rania Saadeh, Abdelilah K. Sedeeg\",\"doi\":\"10.1155/2022/6280736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a new double integral transform called the double formable transform. Several properties and theorems related to existing conditions, partial derivatives, the double convolution theorem, and others are presented. Additionally, we use a convolution kernel to solve linear partial integro-differential equations (PIDE) by using the double formable transform. By solving numerous cases, the double formable transform’s ability to turn the PIDE into an algebraic equation that is simple to solve is demonstrated.\",\"PeriodicalId\":8218,\"journal\":{\"name\":\"Appl. Comput. Intell. Soft Comput.\",\"volume\":\"74 19\",\"pages\":\"6280736:1-6280736:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Appl. Comput. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6280736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Appl. Comput. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6280736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的二重积分变换,称为二重可成形变换。给出了与存在条件、偏导数、二重卷积定理等有关的几个性质和定理。此外,我们还利用卷积核利用二重可成形变换来求解线性偏积分微分方程。通过求解大量实例,证明了双可成形变换将PIDE转化为易于求解的代数方程的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Partial Integro-Differential Equations via Double Formable Transform
In this study, we present a new double integral transform called the double formable transform. Several properties and theorems related to existing conditions, partial derivatives, the double convolution theorem, and others are presented. Additionally, we use a convolution kernel to solve linear partial integro-differential equations (PIDE) by using the double formable transform. By solving numerous cases, the double formable transform’s ability to turn the PIDE into an algebraic equation that is simple to solve is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信