{"title":"群体协议中时间最优的松散稳定领袖选举","authors":"Y. Sudo, R. Eguchi, Taisuke Izumi, T. Masuzawa","doi":"10.4230/LIPIcs.DISC.2021.40","DOIUrl":null,"url":null,"abstract":"We consider the leader election problem in population protocol models. In pragmatic settings of population protocols, self-stabilization is a highly desired feature owing to its fault resilience and the benefit of initialization freedom. However, the design of self-stabilizing leader election is possible only under a strong assumption (i.e. the knowledge of the \\emph{exact} size of a network) and rich computational resources (i.e. the number of states). Loose-stabilization, introduced by Sudo et al [Theoretical Computer Science, 2012], is a promising relaxed concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that starting from any configuration, the network will reach a safe configuration where a single leader exists within a short time, and thereafter it will maintain the single leader for a long time, but not forever. The main contribution of the paper is a time-optimal loosely-stabilizing leader election protocol. While the shortest convergence time achieved so far in loosely-stabilizing leader election is $O(\\log^3 n)$ parallel time, the proposed protocol with design parameter $\\tau \\ge 1$ attains $O(\\tau \\log n)$ parallel convergence time and $\\Omega(n^{\\tau})$ parallel holding time (i.e. the length of the period keeping the unique leader), both in expectation. This protocol is time-optimal in the sense of both the convergence and holding times in expectation because any loosely-stabilizing leader election protocol with the same length of the holding time is known to require $\\Omega(\\tau \\log n)$ parallel time.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"82 19","pages":"40:1-40:17"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Time-optimal Loosely-stabilizing Leader Election in Population Protocols\",\"authors\":\"Y. Sudo, R. Eguchi, Taisuke Izumi, T. Masuzawa\",\"doi\":\"10.4230/LIPIcs.DISC.2021.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the leader election problem in population protocol models. In pragmatic settings of population protocols, self-stabilization is a highly desired feature owing to its fault resilience and the benefit of initialization freedom. However, the design of self-stabilizing leader election is possible only under a strong assumption (i.e. the knowledge of the \\\\emph{exact} size of a network) and rich computational resources (i.e. the number of states). Loose-stabilization, introduced by Sudo et al [Theoretical Computer Science, 2012], is a promising relaxed concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that starting from any configuration, the network will reach a safe configuration where a single leader exists within a short time, and thereafter it will maintain the single leader for a long time, but not forever. The main contribution of the paper is a time-optimal loosely-stabilizing leader election protocol. While the shortest convergence time achieved so far in loosely-stabilizing leader election is $O(\\\\log^3 n)$ parallel time, the proposed protocol with design parameter $\\\\tau \\\\ge 1$ attains $O(\\\\tau \\\\log n)$ parallel convergence time and $\\\\Omega(n^{\\\\tau})$ parallel holding time (i.e. the length of the period keeping the unique leader), both in expectation. This protocol is time-optimal in the sense of both the convergence and holding times in expectation because any loosely-stabilizing leader election protocol with the same length of the holding time is known to require $\\\\Omega(\\\\tau \\\\log n)$ parallel time.\",\"PeriodicalId\":89463,\"journal\":{\"name\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"volume\":\"82 19\",\"pages\":\"40:1-40:17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Symposium on High Performance Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.DISC.2021.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.DISC.2021.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-optimal Loosely-stabilizing Leader Election in Population Protocols
We consider the leader election problem in population protocol models. In pragmatic settings of population protocols, self-stabilization is a highly desired feature owing to its fault resilience and the benefit of initialization freedom. However, the design of self-stabilizing leader election is possible only under a strong assumption (i.e. the knowledge of the \emph{exact} size of a network) and rich computational resources (i.e. the number of states). Loose-stabilization, introduced by Sudo et al [Theoretical Computer Science, 2012], is a promising relaxed concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that starting from any configuration, the network will reach a safe configuration where a single leader exists within a short time, and thereafter it will maintain the single leader for a long time, but not forever. The main contribution of the paper is a time-optimal loosely-stabilizing leader election protocol. While the shortest convergence time achieved so far in loosely-stabilizing leader election is $O(\log^3 n)$ parallel time, the proposed protocol with design parameter $\tau \ge 1$ attains $O(\tau \log n)$ parallel convergence time and $\Omega(n^{\tau})$ parallel holding time (i.e. the length of the period keeping the unique leader), both in expectation. This protocol is time-optimal in the sense of both the convergence and holding times in expectation because any loosely-stabilizing leader election protocol with the same length of the holding time is known to require $\Omega(\tau \log n)$ parallel time.