非欧几里得响应和预测因子的加性回归

Jeong Min Jeon, B. Park, I. Van Keilegom
{"title":"非欧几里得响应和预测因子的加性回归","authors":"Jeong Min Jeon, B. Park, I. Van Keilegom","doi":"10.1214/21-aos2048","DOIUrl":null,"url":null,"abstract":"Additive regression is studied in a very general setting where both the response and predictors are allowed to be non-Euclidean. The response takes values in a general separable Hilbert space, whereas the predictors take values in general semimetric spaces, which covers a very wide range of nonstandard response variables and predictors. A general framework of estimating additive models is presented for semimetric space-valued predictors. In particular, full details of implementation and the corresponding theory are given for predictors taking values in Hilbert spaces and/or Riemannian manifolds. The existence of the estimators, convergence of a backfitting algorithm, rates of convergence and asymptotic distributions of the estimators are discussed. The finite sample performance of the estimators is investigated by means of two simulation studies. Finally, three data sets covering several types of nonEuclidean data are analyzed to illustrate the usefulness of the proposed general approach.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"77 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Additive regression for non-Euclidean responses and predictors\",\"authors\":\"Jeong Min Jeon, B. Park, I. Van Keilegom\",\"doi\":\"10.1214/21-aos2048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive regression is studied in a very general setting where both the response and predictors are allowed to be non-Euclidean. The response takes values in a general separable Hilbert space, whereas the predictors take values in general semimetric spaces, which covers a very wide range of nonstandard response variables and predictors. A general framework of estimating additive models is presented for semimetric space-valued predictors. In particular, full details of implementation and the corresponding theory are given for predictors taking values in Hilbert spaces and/or Riemannian manifolds. The existence of the estimators, convergence of a backfitting algorithm, rates of convergence and asymptotic distributions of the estimators are discussed. The finite sample performance of the estimators is investigated by means of two simulation studies. Finally, three data sets covering several types of nonEuclidean data are analyzed to illustrate the usefulness of the proposed general approach.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"77 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

加性回归是在一个非常一般的环境中研究的,其中响应和预测都允许是非欧几里得的。响应在一般可分希尔伯特空间中取值,而预测量在一般半度量空间中取值,这涵盖了非常广泛的非标准响应变量和预测量。给出了半度量空间值预测器加性模型估计的一般框架。特别地,给出了在希尔伯特空间和/或黎曼流形中取值的预测器的全部实现细节和相应的理论。讨论了估计量的存在性、反拟合算法的收敛性、收敛速率和估计量的渐近分布。通过两次仿真研究,研究了估计器的有限样本性能。最后,分析了三个涵盖几种类型的非欧几里得数据的数据集,以说明所提出的一般方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive regression for non-Euclidean responses and predictors
Additive regression is studied in a very general setting where both the response and predictors are allowed to be non-Euclidean. The response takes values in a general separable Hilbert space, whereas the predictors take values in general semimetric spaces, which covers a very wide range of nonstandard response variables and predictors. A general framework of estimating additive models is presented for semimetric space-valued predictors. In particular, full details of implementation and the corresponding theory are given for predictors taking values in Hilbert spaces and/or Riemannian manifolds. The existence of the estimators, convergence of a backfitting algorithm, rates of convergence and asymptotic distributions of the estimators are discussed. The finite sample performance of the estimators is investigated by means of two simulation studies. Finally, three data sets covering several types of nonEuclidean data are analyzed to illustrate the usefulness of the proposed general approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信