{"title":"跟随光:使用多模态成像和光纤光谱来评估日光荧光艺术家颜料的老化","authors":"Fiona Beckett, A. Shugar","doi":"10.3390/colorants1020013","DOIUrl":null,"url":null,"abstract":"Daylight fluorescent artists’ colors have been well established as fugitive. Upon exposure to light, these vibrant colors can fade and exhibit color shifts. Artwork containing these fluorescent colorants presents complex challenges for art conservators faced with conserving these inherently problematic materials. This paper examined nine fluorescent colorants obtained from Kremer Pigmente, referred to the previous literature and research, and attempted to quantify the visual and photographic observations of fading and color changes. It provides additional information that could be useful in considering conservation documentation and treatment. Fiber optic spectroscopy using ultraviolet and visible light sources was used to measure the spectral shifts of the colorants before and after exposure to light. The fluorescent colors exhibited alterations in intensity coupled with primary peak shifts in the spectrum corresponding to the optical fading and color shifts. Multimodal imaging was executed to analyze the pigments in different regions of the spectrum before and after aging, which has not been documented before with these fluorescent colorants. Imaging in various regions of the spectrum indicated differences in absorption and reflectance between the pigments as captured by a modified camera. The results were compared to recently published research including the identification of the dyes present in the Kremer line of pigments. Multimodal imaging and fiber optic spectroscopy provided valuable information for future documentation and conservation of artworks containing these colorants. Specifically, these non-invasive techniques provide a method to document and identify the spectral changes between the aged and unaged pigment, graph and predict the direction of overall color change, and provide useful data for establishing future conservation treatment protocols.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"137 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Following the Light: Use of Multimodal Imaging and Fiber Optic Spectroscopy to Evaluate Aging in Daylight Fluorescent Artists’ Pigments\",\"authors\":\"Fiona Beckett, A. Shugar\",\"doi\":\"10.3390/colorants1020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Daylight fluorescent artists’ colors have been well established as fugitive. Upon exposure to light, these vibrant colors can fade and exhibit color shifts. Artwork containing these fluorescent colorants presents complex challenges for art conservators faced with conserving these inherently problematic materials. This paper examined nine fluorescent colorants obtained from Kremer Pigmente, referred to the previous literature and research, and attempted to quantify the visual and photographic observations of fading and color changes. It provides additional information that could be useful in considering conservation documentation and treatment. Fiber optic spectroscopy using ultraviolet and visible light sources was used to measure the spectral shifts of the colorants before and after exposure to light. The fluorescent colors exhibited alterations in intensity coupled with primary peak shifts in the spectrum corresponding to the optical fading and color shifts. Multimodal imaging was executed to analyze the pigments in different regions of the spectrum before and after aging, which has not been documented before with these fluorescent colorants. Imaging in various regions of the spectrum indicated differences in absorption and reflectance between the pigments as captured by a modified camera. The results were compared to recently published research including the identification of the dyes present in the Kremer line of pigments. Multimodal imaging and fiber optic spectroscopy provided valuable information for future documentation and conservation of artworks containing these colorants. Specifically, these non-invasive techniques provide a method to document and identify the spectral changes between the aged and unaged pigment, graph and predict the direction of overall color change, and provide useful data for establishing future conservation treatment protocols.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"137 47\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants1020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants1020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Following the Light: Use of Multimodal Imaging and Fiber Optic Spectroscopy to Evaluate Aging in Daylight Fluorescent Artists’ Pigments
Daylight fluorescent artists’ colors have been well established as fugitive. Upon exposure to light, these vibrant colors can fade and exhibit color shifts. Artwork containing these fluorescent colorants presents complex challenges for art conservators faced with conserving these inherently problematic materials. This paper examined nine fluorescent colorants obtained from Kremer Pigmente, referred to the previous literature and research, and attempted to quantify the visual and photographic observations of fading and color changes. It provides additional information that could be useful in considering conservation documentation and treatment. Fiber optic spectroscopy using ultraviolet and visible light sources was used to measure the spectral shifts of the colorants before and after exposure to light. The fluorescent colors exhibited alterations in intensity coupled with primary peak shifts in the spectrum corresponding to the optical fading and color shifts. Multimodal imaging was executed to analyze the pigments in different regions of the spectrum before and after aging, which has not been documented before with these fluorescent colorants. Imaging in various regions of the spectrum indicated differences in absorption and reflectance between the pigments as captured by a modified camera. The results were compared to recently published research including the identification of the dyes present in the Kremer line of pigments. Multimodal imaging and fiber optic spectroscopy provided valuable information for future documentation and conservation of artworks containing these colorants. Specifically, these non-invasive techniques provide a method to document and identify the spectral changes between the aged and unaged pigment, graph and predict the direction of overall color change, and provide useful data for establishing future conservation treatment protocols.