关于自组织映射(SOMs)和随机邻居嵌入(SNE)的统一观点

Thibaut Kulak, Anthony Fillion, Franccois Blayo
{"title":"关于自组织映射(SOMs)和随机邻居嵌入(SNE)的统一观点","authors":"Thibaut Kulak, Anthony Fillion, Franccois Blayo","doi":"10.48550/arXiv.2205.01492","DOIUrl":null,"url":null,"abstract":"We propose a unified view on two widely used data visualization techniques: Self-Organizing Maps (SOMs) and Stochastic Neighbor Embedding (SNE). We show that they can both be derived from a common mathematical framework. Leveraging this formulation, we propose to compare SOM and SNE quantitatively on two datasets, and discuss possible avenues for future work to take advantage of both approaches.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"139 20","pages":"458-468"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified view on Self-Organizing Maps (SOMs) and Stochastic Neighbor Embedding (SNE)\",\"authors\":\"Thibaut Kulak, Anthony Fillion, Franccois Blayo\",\"doi\":\"10.48550/arXiv.2205.01492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a unified view on two widely used data visualization techniques: Self-Organizing Maps (SOMs) and Stochastic Neighbor Embedding (SNE). We show that they can both be derived from a common mathematical framework. Leveraging this formulation, we propose to compare SOM and SNE quantitatively on two datasets, and discuss possible avenues for future work to take advantage of both approaches.\",\"PeriodicalId\":93416,\"journal\":{\"name\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"volume\":\"139 20\",\"pages\":\"458-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.01492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.01492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对两种广泛使用的数据可视化技术:自组织映射(SOMs)和随机邻居嵌入(SNE)提出了统一的观点。我们证明它们都可以从一个共同的数学框架中推导出来。利用这一公式,我们建议在两个数据集上定量地比较SOM和SNE,并讨论利用这两种方法的未来工作的可能途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified view on Self-Organizing Maps (SOMs) and Stochastic Neighbor Embedding (SNE)
We propose a unified view on two widely used data visualization techniques: Self-Organizing Maps (SOMs) and Stochastic Neighbor Embedding (SNE). We show that they can both be derived from a common mathematical framework. Leveraging this formulation, we propose to compare SOM and SNE quantitatively on two datasets, and discuss possible avenues for future work to take advantage of both approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信