非热大气压等离子体射流的数值模拟与实验比较

W. Ning, Lijun Wang, S. Jia, Mingzheng Fu, Z. Shi, Xingwen Li
{"title":"非热大气压等离子体射流的数值模拟与实验比较","authors":"W. Ning, Lijun Wang, S. Jia, Mingzheng Fu, Z. Shi, Xingwen Li","doi":"10.1109/PLASMA.2012.6383660","DOIUrl":null,"url":null,"abstract":"Summary form only given. This paper presents a computational study of point-to-plane atmospheric helium plasma discharge. We employed a two-dimensional, axisymmetric fluid model to investigate the time-dependent characters of the discharge. Helium with small amount of nitrogen (impurity) was used as the working gas. The gap distance between the two electrodes was varied from 1mm to 15mm. The magnitude of the applied voltage's amplitude was in the range of 1kV∼10kV, and the frequency was 10 kHz. The coupled continuity equations for particles and electron energy equation were solved with the Poisson' equation using the finite element method with unstructured grids. Simulation results showed that the plasma needle operated as the corona discharge at low power and the mode transferred to glow discharge as the power surpassed certain critical value, and this value decreased either the frequency increased or the gap distance decreased. Furthermore, the simulation results were compared with the experimental results. The results showed that simulation results were in reasonable agreement with experiments.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of nonthermal atmospheric pressure plasma jet and comparison with experiments\",\"authors\":\"W. Ning, Lijun Wang, S. Jia, Mingzheng Fu, Z. Shi, Xingwen Li\",\"doi\":\"10.1109/PLASMA.2012.6383660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. This paper presents a computational study of point-to-plane atmospheric helium plasma discharge. We employed a two-dimensional, axisymmetric fluid model to investigate the time-dependent characters of the discharge. Helium with small amount of nitrogen (impurity) was used as the working gas. The gap distance between the two electrodes was varied from 1mm to 15mm. The magnitude of the applied voltage's amplitude was in the range of 1kV∼10kV, and the frequency was 10 kHz. The coupled continuity equations for particles and electron energy equation were solved with the Poisson' equation using the finite element method with unstructured grids. Simulation results showed that the plasma needle operated as the corona discharge at low power and the mode transferred to glow discharge as the power surpassed certain critical value, and this value decreased either the frequency increased or the gap distance decreased. Furthermore, the simulation results were compared with the experimental results. The results showed that simulation results were in reasonable agreement with experiments.\",\"PeriodicalId\":6359,\"journal\":{\"name\":\"2008 IEEE 35th International Conference on Plasma Science\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 35th International Conference on Plasma Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2012.6383660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2012.6383660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。本文对大气氦等离子体点对面放电进行了计算研究。我们采用二维轴对称流体模型来研究放电的时变特性。工作气体采用氦和少量氮(杂质)。两个电极之间的间隙距离从1mm到15mm不等。施加电压的幅值范围为1kV ~ 10kV,频率为10khz。采用非结构网格有限元法,用泊松方程求解了粒子和电子能量的耦合连续性方程。仿真结果表明,等离子体针在低功率下以电晕放电方式工作,当功率超过某一临界值时模式转变为辉光放电,该临界值随着频率的增加或间隙距离的减小而减小。并将仿真结果与实验结果进行了比较。结果表明,仿真结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of nonthermal atmospheric pressure plasma jet and comparison with experiments
Summary form only given. This paper presents a computational study of point-to-plane atmospheric helium plasma discharge. We employed a two-dimensional, axisymmetric fluid model to investigate the time-dependent characters of the discharge. Helium with small amount of nitrogen (impurity) was used as the working gas. The gap distance between the two electrodes was varied from 1mm to 15mm. The magnitude of the applied voltage's amplitude was in the range of 1kV∼10kV, and the frequency was 10 kHz. The coupled continuity equations for particles and electron energy equation were solved with the Poisson' equation using the finite element method with unstructured grids. Simulation results showed that the plasma needle operated as the corona discharge at low power and the mode transferred to glow discharge as the power surpassed certain critical value, and this value decreased either the frequency increased or the gap distance decreased. Furthermore, the simulation results were compared with the experimental results. The results showed that simulation results were in reasonable agreement with experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信