G. Meles, J. van der Neut, K. V. van Dongen, K. Wapenaar
{"title":"波场聚焦降低颅骨侵入性","authors":"G. Meles, J. van der Neut, K. V. van Dongen, K. Wapenaar","doi":"10.1109/ULTSYM.2019.8925565","DOIUrl":null,"url":null,"abstract":"Wavefield focusing can be achieved by Time-Reversal Mirrors, which involve in- and output signals that are infinite in time and waves propagating through the entire medium. Here, an alternative solution for wavefield focusing is presented. This solution is based on a new integral representation where in- and output signals are finite in time, and where the energy of the waves propagating in the layer embedding the focal point is reduced. We explore the potential of the proposed method with numerical experiments involving a 1D example and a cranium model consisting of a skull enclosing a brain.","PeriodicalId":6759,"journal":{"name":"2019 IEEE International Ultrasonics Symposium (IUS)","volume":"1 1","pages":"1851-1854"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wavefield focusing with reduced cranial invasiveness\",\"authors\":\"G. Meles, J. van der Neut, K. V. van Dongen, K. Wapenaar\",\"doi\":\"10.1109/ULTSYM.2019.8925565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavefield focusing can be achieved by Time-Reversal Mirrors, which involve in- and output signals that are infinite in time and waves propagating through the entire medium. Here, an alternative solution for wavefield focusing is presented. This solution is based on a new integral representation where in- and output signals are finite in time, and where the energy of the waves propagating in the layer embedding the focal point is reduced. We explore the potential of the proposed method with numerical experiments involving a 1D example and a cranium model consisting of a skull enclosing a brain.\",\"PeriodicalId\":6759,\"journal\":{\"name\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"1 1\",\"pages\":\"1851-1854\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2019.8925565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2019.8925565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wavefield focusing with reduced cranial invasiveness
Wavefield focusing can be achieved by Time-Reversal Mirrors, which involve in- and output signals that are infinite in time and waves propagating through the entire medium. Here, an alternative solution for wavefield focusing is presented. This solution is based on a new integral representation where in- and output signals are finite in time, and where the energy of the waves propagating in the layer embedding the focal point is reduced. We explore the potential of the proposed method with numerical experiments involving a 1D example and a cranium model consisting of a skull enclosing a brain.