Yang Li, Haoyu Yang, Haochen Yu, Hanwen Huang, Ye Shen
{"title":"在相关多重输入数据上进行变量选择的惩罚加权最小二乘估计","authors":"Yang Li, Haoyu Yang, Haochen Yu, Hanwen Huang, Ye Shen","doi":"10.1093/jrsssc/qlad028","DOIUrl":null,"url":null,"abstract":"\n Considering the inevitable correlation among different datasets within the same subject, we propose a framework of variable selection on multiply imputed data with penalized weighted least squares (PWLS–MI). The methodological development is motivated by an epidemiological study of A/H7N9 patients from Zhejiang province in China, where nearly half of the variables are not fully observed. Multiple imputation is commonly adopted as a missing data processing method. However, it generates correlations among imputed values within the same subject across datasets. Recent work on variable selection for multiply imputed data does not fully address such similarities. We propose PWLS–MI to incorporate the correlation when performing the variable selection. PWLS–MI can be considered as a framework for variable selection on multiply imputed data since it allows various penalties. We use adaptive LASSO as an illustrating example. Extensive simulation studies are conducted to compare PWLS–MI with recently developed methods and the results suggest that the proposed approach outperforms in terms of both selection accuracy and deletion accuracy. PWLS–MI is shown to select variables with clinical relevance when applied to the A/H7N9 database.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data\",\"authors\":\"Yang Li, Haoyu Yang, Haochen Yu, Hanwen Huang, Ye Shen\",\"doi\":\"10.1093/jrsssc/qlad028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Considering the inevitable correlation among different datasets within the same subject, we propose a framework of variable selection on multiply imputed data with penalized weighted least squares (PWLS–MI). The methodological development is motivated by an epidemiological study of A/H7N9 patients from Zhejiang province in China, where nearly half of the variables are not fully observed. Multiple imputation is commonly adopted as a missing data processing method. However, it generates correlations among imputed values within the same subject across datasets. Recent work on variable selection for multiply imputed data does not fully address such similarities. We propose PWLS–MI to incorporate the correlation when performing the variable selection. PWLS–MI can be considered as a framework for variable selection on multiply imputed data since it allows various penalties. We use adaptive LASSO as an illustrating example. Extensive simulation studies are conducted to compare PWLS–MI with recently developed methods and the results suggest that the proposed approach outperforms in terms of both selection accuracy and deletion accuracy. PWLS–MI is shown to select variables with clinical relevance when applied to the A/H7N9 database.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlad028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data
Considering the inevitable correlation among different datasets within the same subject, we propose a framework of variable selection on multiply imputed data with penalized weighted least squares (PWLS–MI). The methodological development is motivated by an epidemiological study of A/H7N9 patients from Zhejiang province in China, where nearly half of the variables are not fully observed. Multiple imputation is commonly adopted as a missing data processing method. However, it generates correlations among imputed values within the same subject across datasets. Recent work on variable selection for multiply imputed data does not fully address such similarities. We propose PWLS–MI to incorporate the correlation when performing the variable selection. PWLS–MI can be considered as a framework for variable selection on multiply imputed data since it allows various penalties. We use adaptive LASSO as an illustrating example. Extensive simulation studies are conducted to compare PWLS–MI with recently developed methods and the results suggest that the proposed approach outperforms in terms of both selection accuracy and deletion accuracy. PWLS–MI is shown to select variables with clinical relevance when applied to the A/H7N9 database.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.