短路故障下WR -Resolvers性能评估分析模型的提出

H. Lasjerdi, Z. Nasiri-Gheidari, F. Tootoonchian
{"title":"短路故障下WR -Resolvers性能评估分析模型的提出","authors":"H. Lasjerdi, Z. Nasiri-Gheidari, F. Tootoonchian","doi":"10.1109/IranianCEE.2019.8786676","DOIUrl":null,"url":null,"abstract":"Wound-Rotor (WR) resolvers are the most widely used position sensors in applications with harsh environmental conditions. However, their performance is exposed to failure due to high risk of short circuit (SC) fault. Although the output current of the resolver is negligible, its thin copper wires increases the probability of the short circuit fault. To avoid the propagation of the turn-to turn SC fault to the whole coil and undesirable performance of the motion control drive, it is necessary to diagnose it at the very beginning of its development. Meanwhile, the first step of diagnosing faults is their modeling. Time stepping finite element analysis is the most accurate, but computationally expensive method for modelling the electromagnetic devices. Therefore, it is required to establish an accurate, yet computationally fast model. In this regards, an analytical model based on d-q axes theory is proposed. Then, the success of the proposed model is validated by experimental tests on the studied sensor.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"76 1","pages":"486-490"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Proposal of an Analytical Model for Performance Evaluation of WR -Resolvers under Short Circuit Fault\",\"authors\":\"H. Lasjerdi, Z. Nasiri-Gheidari, F. Tootoonchian\",\"doi\":\"10.1109/IranianCEE.2019.8786676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wound-Rotor (WR) resolvers are the most widely used position sensors in applications with harsh environmental conditions. However, their performance is exposed to failure due to high risk of short circuit (SC) fault. Although the output current of the resolver is negligible, its thin copper wires increases the probability of the short circuit fault. To avoid the propagation of the turn-to turn SC fault to the whole coil and undesirable performance of the motion control drive, it is necessary to diagnose it at the very beginning of its development. Meanwhile, the first step of diagnosing faults is their modeling. Time stepping finite element analysis is the most accurate, but computationally expensive method for modelling the electromagnetic devices. Therefore, it is required to establish an accurate, yet computationally fast model. In this regards, an analytical model based on d-q axes theory is proposed. Then, the success of the proposed model is validated by experimental tests on the studied sensor.\",\"PeriodicalId\":6683,\"journal\":{\"name\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"76 1\",\"pages\":\"486-490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IranianCEE.2019.8786676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

绕线转子(WR)传感器是在恶劣环境条件下应用最广泛的位置传感器。然而,由于短路(SC)故障的高风险,它们的性能处于失效状态。解析器的输出电流虽然可以忽略不计,但其细铜线增加了短路故障发生的概率。为避免匝间SC故障传播到整个线圈,影响运动控制驱动器的性能,有必要在其发展初期就对其进行诊断。同时,故障诊断的第一步是对故障进行建模。时间步进有限元分析是最精确的电磁器件建模方法,但计算代价昂贵。因此,需要建立一个准确且计算速度快的模型。为此,提出了一种基于d-q轴理论的解析模型。然后,通过对所研究传感器的实验测试,验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal of an Analytical Model for Performance Evaluation of WR -Resolvers under Short Circuit Fault
Wound-Rotor (WR) resolvers are the most widely used position sensors in applications with harsh environmental conditions. However, their performance is exposed to failure due to high risk of short circuit (SC) fault. Although the output current of the resolver is negligible, its thin copper wires increases the probability of the short circuit fault. To avoid the propagation of the turn-to turn SC fault to the whole coil and undesirable performance of the motion control drive, it is necessary to diagnose it at the very beginning of its development. Meanwhile, the first step of diagnosing faults is their modeling. Time stepping finite element analysis is the most accurate, but computationally expensive method for modelling the electromagnetic devices. Therefore, it is required to establish an accurate, yet computationally fast model. In this regards, an analytical model based on d-q axes theory is proposed. Then, the success of the proposed model is validated by experimental tests on the studied sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信