{"title":"两族超循环非卷积算子","authors":"A. Myers, Muhammadyusuf Odinaev, David Walmsley","doi":"10.2140/INVOLVE.2021.14.349","DOIUrl":null,"url":null,"abstract":"Let $H(\\mathbb{C})$ be the set of all entire functions endowed with the topology of uniform convergence on compact sets. Let $\\lambda,b\\in\\mathbb{C}$, let $C_\\gamma:H(\\mathbb{C})\\to H(\\mathbb{C})$ be the composition operator $C_\\gamma f(z)=f(\\lambda z+b)$, and let $D$ be the derivative operator. We extend results on the hypercyclicity of the non-convolution operators $T_{\\lambda,b}=C_\\gamma \\circ D$ by showing that whenever $|\\lambda|\\geq 1$, the algebra of operators \\begin{align*} \\{\\psi(T_{\\lambda,b}): \\psi(z)\\in H(\\mathbb{C}), \\psi(0)=0 \\text{ and } \\psi(T_{\\lambda,b}) \\text{ is continuous}\\} \\end{align*} and the family of operators \\begin{align*} \\{C_\\gamma\\circ\\varphi(D): \\varphi(z) \\text{ is an entire function of exponential type with } \\varphi(0)=0\\} \\end{align*} consist entirely of hypercyclic operators (i.e., each operator has a dense orbit).","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two families of hypercyclic nonconvolution operators\",\"authors\":\"A. Myers, Muhammadyusuf Odinaev, David Walmsley\",\"doi\":\"10.2140/INVOLVE.2021.14.349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $H(\\\\mathbb{C})$ be the set of all entire functions endowed with the topology of uniform convergence on compact sets. Let $\\\\lambda,b\\\\in\\\\mathbb{C}$, let $C_\\\\gamma:H(\\\\mathbb{C})\\\\to H(\\\\mathbb{C})$ be the composition operator $C_\\\\gamma f(z)=f(\\\\lambda z+b)$, and let $D$ be the derivative operator. We extend results on the hypercyclicity of the non-convolution operators $T_{\\\\lambda,b}=C_\\\\gamma \\\\circ D$ by showing that whenever $|\\\\lambda|\\\\geq 1$, the algebra of operators \\\\begin{align*} \\\\{\\\\psi(T_{\\\\lambda,b}): \\\\psi(z)\\\\in H(\\\\mathbb{C}), \\\\psi(0)=0 \\\\text{ and } \\\\psi(T_{\\\\lambda,b}) \\\\text{ is continuous}\\\\} \\\\end{align*} and the family of operators \\\\begin{align*} \\\\{C_\\\\gamma\\\\circ\\\\varphi(D): \\\\varphi(z) \\\\text{ is an entire function of exponential type with } \\\\varphi(0)=0\\\\} \\\\end{align*} consist entirely of hypercyclic operators (i.e., each operator has a dense orbit).\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/INVOLVE.2021.14.349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/INVOLVE.2021.14.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设$H(\mathbb{C})$为紧集上具有一致收敛拓扑的所有完整函数的集合。设$\lambda,b\in\mathbb{C}$, $C_\gamma:H(\mathbb{C})\to H(\mathbb{C})$是复合运算符$C_\gamma f(z)=f(\lambda z+b)$, $D$是导数运算符。我们扩展了关于非卷积算子$T_{\lambda,b}=C_\gamma \circ D$的超循环性的结果,证明当$|\lambda|\geq 1$时,算子的代数\begin{align*} \{\psi(T_{\lambda,b}): \psi(z)\in H(\mathbb{C}), \psi(0)=0 \text{ and } \psi(T_{\lambda,b}) \text{ is continuous}\} \end{align*}和算子族\begin{align*} \{C_\gamma\circ\varphi(D): \varphi(z) \text{ is an entire function of exponential type with } \varphi(0)=0\} \end{align*}完全由超循环算子组成(即每个算子都有一个密集的轨道)。
Two families of hypercyclic nonconvolution operators
Let $H(\mathbb{C})$ be the set of all entire functions endowed with the topology of uniform convergence on compact sets. Let $\lambda,b\in\mathbb{C}$, let $C_\gamma:H(\mathbb{C})\to H(\mathbb{C})$ be the composition operator $C_\gamma f(z)=f(\lambda z+b)$, and let $D$ be the derivative operator. We extend results on the hypercyclicity of the non-convolution operators $T_{\lambda,b}=C_\gamma \circ D$ by showing that whenever $|\lambda|\geq 1$, the algebra of operators \begin{align*} \{\psi(T_{\lambda,b}): \psi(z)\in H(\mathbb{C}), \psi(0)=0 \text{ and } \psi(T_{\lambda,b}) \text{ is continuous}\} \end{align*} and the family of operators \begin{align*} \{C_\gamma\circ\varphi(D): \varphi(z) \text{ is an entire function of exponential type with } \varphi(0)=0\} \end{align*} consist entirely of hypercyclic operators (i.e., each operator has a dense orbit).