优化调整有限差分估计器

Haidong Li, H. Lam
{"title":"优化调整有限差分估计器","authors":"Haidong Li, H. Lam","doi":"10.1109/WSC48552.2020.9384002","DOIUrl":null,"url":null,"abstract":"We consider stochastic gradient estimation when only noisy function evaluations are available. Central finite-difference scheme is a common method in this setting, which involves generating samples under perturbed inputs. Though it is widely known how to select the perturbation size to achieve the optimal order of the error, exactly achieving the optimal first-order error, which we call asymptotic optimality, is considered much more challenging and not attempted in practice. In this paper, we provide evidence that designing asymptotically optimal estimator is practically possible. In particular, we propose a new two-stage scheme that first estimates the required parameter in the perturbation size, followed by running finite-difference based on the estimated parameter in the first stage. Both theory and numerical experiments demonstrate the optimality of the proposed estimator and the robustness over conventional finite-difference schemes based on ad hoc tuning.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"51 1","pages":"457-468"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimally Tuning Finite-Difference Estimators\",\"authors\":\"Haidong Li, H. Lam\",\"doi\":\"10.1109/WSC48552.2020.9384002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider stochastic gradient estimation when only noisy function evaluations are available. Central finite-difference scheme is a common method in this setting, which involves generating samples under perturbed inputs. Though it is widely known how to select the perturbation size to achieve the optimal order of the error, exactly achieving the optimal first-order error, which we call asymptotic optimality, is considered much more challenging and not attempted in practice. In this paper, we provide evidence that designing asymptotically optimal estimator is practically possible. In particular, we propose a new two-stage scheme that first estimates the required parameter in the perturbation size, followed by running finite-difference based on the estimated parameter in the first stage. Both theory and numerical experiments demonstrate the optimality of the proposed estimator and the robustness over conventional finite-difference schemes based on ad hoc tuning.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"51 1\",\"pages\":\"457-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9384002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当只有噪声函数评估可用时,我们考虑随机梯度估计。在这种情况下,中心有限差分格式是一种常用的方法,它涉及在扰动输入下生成样本。虽然大家都知道如何选择扰动大小来达到最优的误差阶数,但准确地达到最优的一阶误差,我们称之为渐近最优,被认为是更具挑战性的,在实践中没有尝试过。在本文中,我们证明了设计渐近最优估计量在实际中是可能的。特别地,我们提出了一种新的两阶段方案,首先在扰动大小中估计所需的参数,然后在第一阶段基于估计的参数运行有限差分。理论和数值实验都证明了该估计器的最优性和鲁棒性优于传统的基于自适应的有限差分格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimally Tuning Finite-Difference Estimators
We consider stochastic gradient estimation when only noisy function evaluations are available. Central finite-difference scheme is a common method in this setting, which involves generating samples under perturbed inputs. Though it is widely known how to select the perturbation size to achieve the optimal order of the error, exactly achieving the optimal first-order error, which we call asymptotic optimality, is considered much more challenging and not attempted in practice. In this paper, we provide evidence that designing asymptotically optimal estimator is practically possible. In particular, we propose a new two-stage scheme that first estimates the required parameter in the perturbation size, followed by running finite-difference based on the estimated parameter in the first stage. Both theory and numerical experiments demonstrate the optimality of the proposed estimator and the robustness over conventional finite-difference schemes based on ad hoc tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信