大型有限周期和部分周期天线阵列的Block-Toeplitz快速积分方程求解器

E. Bleszynski, M. Bleszynski, T. Jaroszewicz
{"title":"大型有限周期和部分周期天线阵列的Block-Toeplitz快速积分方程求解器","authors":"E. Bleszynski, M. Bleszynski, T. Jaroszewicz","doi":"10.1109/WCT.2003.1321590","DOIUrl":null,"url":null,"abstract":"We propose a fast integral equation solver for large periodic and non-periodic finite antenna array systems. A key element of the algorithm is the rigorous block-Toeplitz method with an FFT-based matrix-vector product accelerator, which can be used in conjunction with either the conventional MoM, or with the AIM (adaptive integral method) or FMM (fast multipole method) compression techniques. We refer to the resulting algorithms as the Toeplitz-MoM, Toeplitz-AIM, or Toeplitz-FMM matrix compressions. For a periodic distribution of array elements, the algorithm exploits the block-Toeplitz structure of the impedance matrix in three dimensions and allows the implementation of matrix-vector multiplication in terms of discrete fast Fourier transforms (FFTs) in spatial variables associated with distances between the array elements. This approach generalizes to antenna arrays with boundaries, arrays located on substrates, and similar not entirely periodic systems.","PeriodicalId":6305,"journal":{"name":"2003 IEEE Topical Conference on Wireless Communication Technology","volume":"81 1","pages":"428-429"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Block-Toeplitz fast integral equation solver for large finite periodic and partially periodic antenna arrays\",\"authors\":\"E. Bleszynski, M. Bleszynski, T. Jaroszewicz\",\"doi\":\"10.1109/WCT.2003.1321590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fast integral equation solver for large periodic and non-periodic finite antenna array systems. A key element of the algorithm is the rigorous block-Toeplitz method with an FFT-based matrix-vector product accelerator, which can be used in conjunction with either the conventional MoM, or with the AIM (adaptive integral method) or FMM (fast multipole method) compression techniques. We refer to the resulting algorithms as the Toeplitz-MoM, Toeplitz-AIM, or Toeplitz-FMM matrix compressions. For a periodic distribution of array elements, the algorithm exploits the block-Toeplitz structure of the impedance matrix in three dimensions and allows the implementation of matrix-vector multiplication in terms of discrete fast Fourier transforms (FFTs) in spatial variables associated with distances between the array elements. This approach generalizes to antenna arrays with boundaries, arrays located on substrates, and similar not entirely periodic systems.\",\"PeriodicalId\":6305,\"journal\":{\"name\":\"2003 IEEE Topical Conference on Wireless Communication Technology\",\"volume\":\"81 1\",\"pages\":\"428-429\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Topical Conference on Wireless Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCT.2003.1321590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Topical Conference on Wireless Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCT.2003.1321590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对大型周期和非周期有限天线阵列系统,提出了一种快速的积分方程求解器。该算法的一个关键要素是具有基于fft的矩阵向量积加速器的严格块toeplitz方法,该方法可以与传统的MoM或AIM(自适应积分法)或FMM(快速多极法)压缩技术结合使用。我们将生成的算法称为Toeplitz-MoM、Toeplitz-AIM或Toeplitz-FMM矩阵压缩。对于阵列元素的周期性分布,该算法利用三维阻抗矩阵的块toeplitz结构,并允许在与阵列元素之间距离相关的空间变量中使用离散快速傅里叶变换(fft)来实现矩阵向量乘法。这种方法可以推广到有边界的天线阵列、位于基板上的阵列以及类似的不完全周期性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block-Toeplitz fast integral equation solver for large finite periodic and partially periodic antenna arrays
We propose a fast integral equation solver for large periodic and non-periodic finite antenna array systems. A key element of the algorithm is the rigorous block-Toeplitz method with an FFT-based matrix-vector product accelerator, which can be used in conjunction with either the conventional MoM, or with the AIM (adaptive integral method) or FMM (fast multipole method) compression techniques. We refer to the resulting algorithms as the Toeplitz-MoM, Toeplitz-AIM, or Toeplitz-FMM matrix compressions. For a periodic distribution of array elements, the algorithm exploits the block-Toeplitz structure of the impedance matrix in three dimensions and allows the implementation of matrix-vector multiplication in terms of discrete fast Fourier transforms (FFTs) in spatial variables associated with distances between the array elements. This approach generalizes to antenna arrays with boundaries, arrays located on substrates, and similar not entirely periodic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信