{"title":"Delta-Dual分层狄利克雷过程:一种实用的异常行为检测器","authors":"T. Haines, T. Xiang","doi":"10.1109/ICCV.2011.6126497","DOIUrl":null,"url":null,"abstract":"In the security domain a key problem is identifying rare behaviours of interest. Training examples for these behaviours may or may not exist, and if they do exist there will be few examples, quite probably one. We present a novel weakly supervised algorithm that can detect behaviours that either have never before been seen or for which there are few examples. Global context is modelled, allowing the detection of abnormal behaviours that in isolation appear normal. Pragmatic aspects are considered, such that no parameter tuning is required and real time performance is achieved.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Delta-Dual Hierarchical Dirichlet Processes: A pragmatic abnormal behaviour detector\",\"authors\":\"T. Haines, T. Xiang\",\"doi\":\"10.1109/ICCV.2011.6126497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the security domain a key problem is identifying rare behaviours of interest. Training examples for these behaviours may or may not exist, and if they do exist there will be few examples, quite probably one. We present a novel weakly supervised algorithm that can detect behaviours that either have never before been seen or for which there are few examples. Global context is modelled, allowing the detection of abnormal behaviours that in isolation appear normal. Pragmatic aspects are considered, such that no parameter tuning is required and real time performance is achieved.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Delta-Dual Hierarchical Dirichlet Processes: A pragmatic abnormal behaviour detector
In the security domain a key problem is identifying rare behaviours of interest. Training examples for these behaviours may or may not exist, and if they do exist there will be few examples, quite probably one. We present a novel weakly supervised algorithm that can detect behaviours that either have never before been seen or for which there are few examples. Global context is modelled, allowing the detection of abnormal behaviours that in isolation appear normal. Pragmatic aspects are considered, such that no parameter tuning is required and real time performance is achieved.