{"title":"二维耦合Klein-Gordon-Schrödinger方程的散射理论","authors":"A. Shimomura","doi":"10.14492/hokmj/1285766230","DOIUrl":null,"url":null,"abstract":"We study the scattering theory for the coupled Klein- Gordon-Schrodinger equation with the Yukawa type interaction in two space dimensions.The scattering problem for this equation belongs to the borderline between the short range case and the long range one. We show the existence of the wave operators to this equation without any size restriction on the Klein-Gordon component of the final state. 2 . (KGS) Here u and v are complex and real valued unknown functions of (t, x) ∈ R × R 2 , respectively.In the present paper, we prove the existence of the wave operators to the equation (KGS) without any size restriction on the Klein-Gordon component of the final state. A large amount of work has been devoted to the asymptotic behavior of solutions for the nonlinear Schrodinger equation and for the nonlinear Klein- Gordon equation.We consider the scattering theory for systems centering on the Schrodinger equation, in particular, the Klein-Gordon-Schrodinger, the Wave-Schrodinger and the Maxwell-Schrodinger equations.In the scat- tering theory for the linear Schrodinger equation, (ordinary) wave operators","PeriodicalId":50143,"journal":{"name":"Journal of Mathematical Sciences-The University of Tokyo","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Scattering Theory for the Coupled Klein-Gordon-Schrödinger Equations in Two Space Dimensions\",\"authors\":\"A. Shimomura\",\"doi\":\"10.14492/hokmj/1285766230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the scattering theory for the coupled Klein- Gordon-Schrodinger equation with the Yukawa type interaction in two space dimensions.The scattering problem for this equation belongs to the borderline between the short range case and the long range one. We show the existence of the wave operators to this equation without any size restriction on the Klein-Gordon component of the final state. 2 . (KGS) Here u and v are complex and real valued unknown functions of (t, x) ∈ R × R 2 , respectively.In the present paper, we prove the existence of the wave operators to the equation (KGS) without any size restriction on the Klein-Gordon component of the final state. A large amount of work has been devoted to the asymptotic behavior of solutions for the nonlinear Schrodinger equation and for the nonlinear Klein- Gordon equation.We consider the scattering theory for systems centering on the Schrodinger equation, in particular, the Klein-Gordon-Schrodinger, the Wave-Schrodinger and the Maxwell-Schrodinger equations.In the scat- tering theory for the linear Schrodinger equation, (ordinary) wave operators\",\"PeriodicalId\":50143,\"journal\":{\"name\":\"Journal of Mathematical Sciences-The University of Tokyo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Sciences-The University of Tokyo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/1285766230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sciences-The University of Tokyo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14492/hokmj/1285766230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Scattering Theory for the Coupled Klein-Gordon-Schrödinger Equations in Two Space Dimensions
We study the scattering theory for the coupled Klein- Gordon-Schrodinger equation with the Yukawa type interaction in two space dimensions.The scattering problem for this equation belongs to the borderline between the short range case and the long range one. We show the existence of the wave operators to this equation without any size restriction on the Klein-Gordon component of the final state. 2 . (KGS) Here u and v are complex and real valued unknown functions of (t, x) ∈ R × R 2 , respectively.In the present paper, we prove the existence of the wave operators to the equation (KGS) without any size restriction on the Klein-Gordon component of the final state. A large amount of work has been devoted to the asymptotic behavior of solutions for the nonlinear Schrodinger equation and for the nonlinear Klein- Gordon equation.We consider the scattering theory for systems centering on the Schrodinger equation, in particular, the Klein-Gordon-Schrodinger, the Wave-Schrodinger and the Maxwell-Schrodinger equations.In the scat- tering theory for the linear Schrodinger equation, (ordinary) wave operators
期刊介绍:
La política de la Revista de Ciencias Matemáticas de la Universidad de Tokio es publicar trabajos de investigación originales en las ciencias matemáticas, incluidas las matemáticas puras y aplicadas. Además, también es nuestra política publicar la revista en formato impreso, así como electrónicamente en Internet. Precisamente hablando, los manuscritos de más de un año están disponibles en nuestra página de inicio en formato PDF.