Z. Cai, W. Xiang, Xia-Biao Peng, Yan Ding, W. Liao, Xiaojie He
{"title":"MicroRNA-145参与肾血管病变的发病机制,可能成为青少年狼疮性肾炎患者的潜在治疗靶点","authors":"Z. Cai, W. Xiang, Xia-Biao Peng, Yan Ding, W. Liao, Xiaojie He","doi":"10.1159/000500923","DOIUrl":null,"url":null,"abstract":"Aims: The current study was conducted with the central objective of investigating the expression of microRNA-145 (miR-145) in renal vascular lesions (RVLs) in juvenile lupus nephritis (JLN) and its possible mechanism. Methods: The clinical data of 49 JLN patients confirmed by renal biopsy were collected and followed by grouping according to the RVLs score after hematoxylin-eosin staining: mild, moderate, and severe groups. In situ hybridization was used to detect the expression of miR-145 in renal vessels which was then being compared among different RVLs groups. Up-LV-miR-145 and LV-miR-NC lentiviral vectors were constructed and transfected into human vascular smooth muscle cells (HVSMCs), respectively. After HVSMCs were treated with 10.0 µg/L platelet-derived growth factor (PDGF)-BB for 24 h, the proliferation, migration, and apoptosis of endothelial cells were detected by MTT, Transwell assay, and flow cytometry, respectively. Western blot was used to detect expression of alpha-smooth muscle actin (α-SM-actin) and osteopontin (OPN). Results: The expression of miR-145 in renal vascular cells was statistically significant. The higher the inner membrane ratio, the lesser the miR-145 expression. After treatment with PDGF-BB, expression of miR-145 in HVSMCs decreased, proliferation and migration ability enhanced, apoptosis decreased, α-SM-actin decreased, and OPN increased. The proliferation and migration ability of HVSMCs in the LV-miR-145 group suppressed, apoptosis enhanced, α-SM-actin increased, and OPN decreased. Conclusions: Our study revealed that miR-145 expression decreased with the increase of vascular damage. miR-145 can inhibit proliferation, migration, and differentiation phenotypic transformation of HVSMCs induced by PDGF-BB. miR-145 may be involved in the pathogenesis of RVLs and may be a new target for treatment of RVLs in lupus nephritis.","PeriodicalId":17810,"journal":{"name":"Kidney and Blood Pressure Research","volume":"9 1","pages":"643 - 655"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"MicroRNA-145 Involves in the Pathogenesis of Renal Vascular Lesions and May Become a Potential Therapeutic Target in Patients with Juvenile Lupus Nephritis\",\"authors\":\"Z. Cai, W. Xiang, Xia-Biao Peng, Yan Ding, W. Liao, Xiaojie He\",\"doi\":\"10.1159/000500923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aims: The current study was conducted with the central objective of investigating the expression of microRNA-145 (miR-145) in renal vascular lesions (RVLs) in juvenile lupus nephritis (JLN) and its possible mechanism. Methods: The clinical data of 49 JLN patients confirmed by renal biopsy were collected and followed by grouping according to the RVLs score after hematoxylin-eosin staining: mild, moderate, and severe groups. In situ hybridization was used to detect the expression of miR-145 in renal vessels which was then being compared among different RVLs groups. Up-LV-miR-145 and LV-miR-NC lentiviral vectors were constructed and transfected into human vascular smooth muscle cells (HVSMCs), respectively. After HVSMCs were treated with 10.0 µg/L platelet-derived growth factor (PDGF)-BB for 24 h, the proliferation, migration, and apoptosis of endothelial cells were detected by MTT, Transwell assay, and flow cytometry, respectively. Western blot was used to detect expression of alpha-smooth muscle actin (α-SM-actin) and osteopontin (OPN). Results: The expression of miR-145 in renal vascular cells was statistically significant. The higher the inner membrane ratio, the lesser the miR-145 expression. After treatment with PDGF-BB, expression of miR-145 in HVSMCs decreased, proliferation and migration ability enhanced, apoptosis decreased, α-SM-actin decreased, and OPN increased. The proliferation and migration ability of HVSMCs in the LV-miR-145 group suppressed, apoptosis enhanced, α-SM-actin increased, and OPN decreased. Conclusions: Our study revealed that miR-145 expression decreased with the increase of vascular damage. miR-145 can inhibit proliferation, migration, and differentiation phenotypic transformation of HVSMCs induced by PDGF-BB. miR-145 may be involved in the pathogenesis of RVLs and may be a new target for treatment of RVLs in lupus nephritis.\",\"PeriodicalId\":17810,\"journal\":{\"name\":\"Kidney and Blood Pressure Research\",\"volume\":\"9 1\",\"pages\":\"643 - 655\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney and Blood Pressure Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000500923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney and Blood Pressure Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000500923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MicroRNA-145 Involves in the Pathogenesis of Renal Vascular Lesions and May Become a Potential Therapeutic Target in Patients with Juvenile Lupus Nephritis
Aims: The current study was conducted with the central objective of investigating the expression of microRNA-145 (miR-145) in renal vascular lesions (RVLs) in juvenile lupus nephritis (JLN) and its possible mechanism. Methods: The clinical data of 49 JLN patients confirmed by renal biopsy were collected and followed by grouping according to the RVLs score after hematoxylin-eosin staining: mild, moderate, and severe groups. In situ hybridization was used to detect the expression of miR-145 in renal vessels which was then being compared among different RVLs groups. Up-LV-miR-145 and LV-miR-NC lentiviral vectors were constructed and transfected into human vascular smooth muscle cells (HVSMCs), respectively. After HVSMCs were treated with 10.0 µg/L platelet-derived growth factor (PDGF)-BB for 24 h, the proliferation, migration, and apoptosis of endothelial cells were detected by MTT, Transwell assay, and flow cytometry, respectively. Western blot was used to detect expression of alpha-smooth muscle actin (α-SM-actin) and osteopontin (OPN). Results: The expression of miR-145 in renal vascular cells was statistically significant. The higher the inner membrane ratio, the lesser the miR-145 expression. After treatment with PDGF-BB, expression of miR-145 in HVSMCs decreased, proliferation and migration ability enhanced, apoptosis decreased, α-SM-actin decreased, and OPN increased. The proliferation and migration ability of HVSMCs in the LV-miR-145 group suppressed, apoptosis enhanced, α-SM-actin increased, and OPN decreased. Conclusions: Our study revealed that miR-145 expression decreased with the increase of vascular damage. miR-145 can inhibit proliferation, migration, and differentiation phenotypic transformation of HVSMCs induced by PDGF-BB. miR-145 may be involved in the pathogenesis of RVLs and may be a new target for treatment of RVLs in lupus nephritis.