基于时空纹理表示的高效视频质量评估

Peng Peng, Kevin J. Cannons, Ze-Nian Li
{"title":"基于时空纹理表示的高效视频质量评估","authors":"Peng Peng, Kevin J. Cannons, Ze-Nian Li","doi":"10.1145/2502081.2502168","DOIUrl":null,"url":null,"abstract":"Most existing video quality metrics measure temporal distortions based on optical-flow estimation, which typically has limited descriptive power of visual dynamics and low efficiency. This paper presents a unified and efficient framework to measure temporal distortions based on a spacetime texture representation of motion. We first propose an effective motion-tuning scheme to capture temporal distortions along motion trajectories by exploiting the distributive characteristic of the spacetime texture. Then we reuse the motion descriptors to build a self-information based spatiotemporal saliency model to guide the spatial pooling. At last, a comprehensive quality metric is developed by combining the temporal distortion measure with spatial distortion measure. Our method demonstrates high efficiency and excellent correlation with the human perception of video quality.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient video quality assessment based on spacetime texture representation\",\"authors\":\"Peng Peng, Kevin J. Cannons, Ze-Nian Li\",\"doi\":\"10.1145/2502081.2502168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing video quality metrics measure temporal distortions based on optical-flow estimation, which typically has limited descriptive power of visual dynamics and low efficiency. This paper presents a unified and efficient framework to measure temporal distortions based on a spacetime texture representation of motion. We first propose an effective motion-tuning scheme to capture temporal distortions along motion trajectories by exploiting the distributive characteristic of the spacetime texture. Then we reuse the motion descriptors to build a self-information based spatiotemporal saliency model to guide the spatial pooling. At last, a comprehensive quality metric is developed by combining the temporal distortion measure with spatial distortion measure. Our method demonstrates high efficiency and excellent correlation with the human perception of video quality.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

现有的视频质量指标大多是基于光流估计来测量时间畸变的,这种方法对视觉动态的描述能力有限,效率较低。本文提出了一种基于运动的时空纹理表示来测量时间畸变的统一、高效的框架。我们首先提出了一种有效的运动调谐方案,通过利用时空纹理的分布特征来捕获运动轨迹上的时间畸变。在此基础上,利用运动描述符构建基于自信息的时空显著性模型来指导空间池化。最后,将时间畸变测度与空间畸变测度相结合,提出了一种综合质量测度。该方法具有较高的效率,并且与人类对视频质量的感知具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient video quality assessment based on spacetime texture representation
Most existing video quality metrics measure temporal distortions based on optical-flow estimation, which typically has limited descriptive power of visual dynamics and low efficiency. This paper presents a unified and efficient framework to measure temporal distortions based on a spacetime texture representation of motion. We first propose an effective motion-tuning scheme to capture temporal distortions along motion trajectories by exploiting the distributive characteristic of the spacetime texture. Then we reuse the motion descriptors to build a self-information based spatiotemporal saliency model to guide the spatial pooling. At last, a comprehensive quality metric is developed by combining the temporal distortion measure with spatial distortion measure. Our method demonstrates high efficiency and excellent correlation with the human perception of video quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信