一种嵌入自编码器的高维问题进化优化框架

Meiji Cui, Li Li, Mengchu Zhou
{"title":"一种嵌入自编码器的高维问题进化优化框架","authors":"Meiji Cui, Li Li, Mengchu Zhou","doi":"10.1109/SMC42975.2020.9282964","DOIUrl":null,"url":null,"abstract":"Many ever-increasingly complex engineering optimization problems fall into the class of High-dimensional Expensive Problems (HEPs), where fitness evaluations are very time-consuming. It is extremely challenging and difficult to produce promising solutions in high-dimensional search space. In this paper, an Autoencoder-embedded Evolutionary Optimization (AEO) framework is proposed for the first time. As an efficient dimension reduction tool, an autoencoder is used to compress high-dimensional landscape to informative low-dimensional space. The search operation in this low-dimensional space can facilitate the population converge towards the optima more efficiently. To balance the exploration and exploitation ability during optimization, two sub-populations coevolve in a distributed fashion, where one is assisted by an autoencoder and the other undergoes a regular evolutionary process. The information between these two sub-populations are dynamically exchanged. The proposed algorithm is validated by testing several 200 dimensional benchmark functions. Compared with the state-of-art algorithms for HEPs, AEO shows extraordinarily high efficiency for these challenging problems.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"11 1","pages":"1046-1051"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Autoencoder-embedded Evolutionary Optimization Framework for High-dimensional Problems\",\"authors\":\"Meiji Cui, Li Li, Mengchu Zhou\",\"doi\":\"10.1109/SMC42975.2020.9282964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many ever-increasingly complex engineering optimization problems fall into the class of High-dimensional Expensive Problems (HEPs), where fitness evaluations are very time-consuming. It is extremely challenging and difficult to produce promising solutions in high-dimensional search space. In this paper, an Autoencoder-embedded Evolutionary Optimization (AEO) framework is proposed for the first time. As an efficient dimension reduction tool, an autoencoder is used to compress high-dimensional landscape to informative low-dimensional space. The search operation in this low-dimensional space can facilitate the population converge towards the optima more efficiently. To balance the exploration and exploitation ability during optimization, two sub-populations coevolve in a distributed fashion, where one is assisted by an autoencoder and the other undergoes a regular evolutionary process. The information between these two sub-populations are dynamically exchanged. The proposed algorithm is validated by testing several 200 dimensional benchmark functions. Compared with the state-of-art algorithms for HEPs, AEO shows extraordinarily high efficiency for these challenging problems.\",\"PeriodicalId\":6718,\"journal\":{\"name\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"volume\":\"11 1\",\"pages\":\"1046-1051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC42975.2020.9282964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9282964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

许多日益复杂的工程优化问题都属于高维昂贵问题(High-dimensional Expensive problems, HEPs),这类问题的适应度评估非常耗时。在高维搜索空间中产生有前途的解决方案是极具挑战性和困难的。本文首次提出了一种嵌入自编码器的进化优化(AEO)框架。自编码器作为一种有效的降维工具,将高维景观压缩到信息丰富的低维空间。在这个低维空间中进行搜索操作,可以使种群更有效地向最优收敛。为了平衡优化过程中的探索和利用能力,两个子种群以分布式方式共同进化,其中一个由自动编码器辅助,另一个经历规则的进化过程。这两个子种群之间的信息是动态交换的。通过对多个200维基准函数的测试,验证了该算法的有效性。与最先进的HEPs算法相比,AEO在这些具有挑战性的问题上表现出了非常高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Autoencoder-embedded Evolutionary Optimization Framework for High-dimensional Problems
Many ever-increasingly complex engineering optimization problems fall into the class of High-dimensional Expensive Problems (HEPs), where fitness evaluations are very time-consuming. It is extremely challenging and difficult to produce promising solutions in high-dimensional search space. In this paper, an Autoencoder-embedded Evolutionary Optimization (AEO) framework is proposed for the first time. As an efficient dimension reduction tool, an autoencoder is used to compress high-dimensional landscape to informative low-dimensional space. The search operation in this low-dimensional space can facilitate the population converge towards the optima more efficiently. To balance the exploration and exploitation ability during optimization, two sub-populations coevolve in a distributed fashion, where one is assisted by an autoencoder and the other undergoes a regular evolutionary process. The information between these two sub-populations are dynamically exchanged. The proposed algorithm is validated by testing several 200 dimensional benchmark functions. Compared with the state-of-art algorithms for HEPs, AEO shows extraordinarily high efficiency for these challenging problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信