GLS-SOD:一种用于空间离群点检测的广义局部统计方法

F. Chen, Chang-Tien Lu, Arnold P. Boedihardjo
{"title":"GLS-SOD:一种用于空间离群点检测的广义局部统计方法","authors":"F. Chen, Chang-Tien Lu, Arnold P. Boedihardjo","doi":"10.1145/1835804.1835939","DOIUrl":null,"url":null,"abstract":"Local based approach is a major category of methods for spatial outlier detection (SOD). Currently, there is a lack of systematic analysis on the statistical properties of this framework. For example, most methods assume identical and independent normal distributions (i.i.d. normal) for the calculated local differences, but no justifications for this critical assumption have been presented. The methods' detection performance on geostatistic data with linear or nonlinear trend is also not well studied. In addition, there is a lack of theoretical connections and empirical comparisons between local and global based SOD approaches. This paper discusses all these fundamental issues under the proposed Generalized Local Statistical (GLS) framework. Furthermore, robust estimation and outlier detection methods are designed for the new GLS model. Extensive simulations demonstrated that the SOD method based on the GLS model significantly outperformed all existing approaches when the spatial data exhibits a linear or nonlinear trend.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"GLS-SOD: a generalized local statistical approach for spatial outlier detection\",\"authors\":\"F. Chen, Chang-Tien Lu, Arnold P. Boedihardjo\",\"doi\":\"10.1145/1835804.1835939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local based approach is a major category of methods for spatial outlier detection (SOD). Currently, there is a lack of systematic analysis on the statistical properties of this framework. For example, most methods assume identical and independent normal distributions (i.i.d. normal) for the calculated local differences, but no justifications for this critical assumption have been presented. The methods' detection performance on geostatistic data with linear or nonlinear trend is also not well studied. In addition, there is a lack of theoretical connections and empirical comparisons between local and global based SOD approaches. This paper discusses all these fundamental issues under the proposed Generalized Local Statistical (GLS) framework. Furthermore, robust estimation and outlier detection methods are designed for the new GLS model. Extensive simulations demonstrated that the SOD method based on the GLS model significantly outperformed all existing approaches when the spatial data exhibits a linear or nonlinear trend.\",\"PeriodicalId\":20529,\"journal\":{\"name\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835804.1835939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

基于局部的方法是空间离群点检测(SOD)的主要方法之一。目前,对该框架的统计特性缺乏系统的分析。例如,大多数方法对计算出的局部差异假设相同且独立的正态分布(i.i.d normal),但没有提出这个关键假设的理由。对于具有线性或非线性趋势的地统计数据,该方法的检测性能也没有得到很好的研究。此外,本地和全球SOD方法之间缺乏理论联系和实证比较。本文在广义局部统计(GLS)框架下讨论了所有这些基本问题。在此基础上,设计了新的GLS模型的鲁棒估计和离群值检测方法。大量的仿真结果表明,当空间数据呈现线性或非线性趋势时,基于GLS模型的SOD方法明显优于现有的所有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GLS-SOD: a generalized local statistical approach for spatial outlier detection
Local based approach is a major category of methods for spatial outlier detection (SOD). Currently, there is a lack of systematic analysis on the statistical properties of this framework. For example, most methods assume identical and independent normal distributions (i.i.d. normal) for the calculated local differences, but no justifications for this critical assumption have been presented. The methods' detection performance on geostatistic data with linear or nonlinear trend is also not well studied. In addition, there is a lack of theoretical connections and empirical comparisons between local and global based SOD approaches. This paper discusses all these fundamental issues under the proposed Generalized Local Statistical (GLS) framework. Furthermore, robust estimation and outlier detection methods are designed for the new GLS model. Extensive simulations demonstrated that the SOD method based on the GLS model significantly outperformed all existing approaches when the spatial data exhibits a linear or nonlinear trend.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信