在中等精度下更快的fft

J. Hoeven, Grégoire Lecerf
{"title":"在中等精度下更快的fft","authors":"J. Hoeven, Grégoire Lecerf","doi":"10.1109/ARITH.2015.10","DOIUrl":null,"url":null,"abstract":"In this paper, we show how to speed up the computation of fast Fourier transforms over complex numbers for \"medium\" precisions, typically in the range from 100 until 400 bits. On the one hand, such precisions are usually not supported by hardware. On the other hand, asymptotically fast algorithms for multiple precision arithmetic do not pay off yet. The main idea behind our algorithms is to develop efficient vectorial multiple precision fixed point arithmetic, capable of exploiting SIMD instructions in modern processors.","PeriodicalId":6526,"journal":{"name":"2015 IEEE 22nd Symposium on Computer Arithmetic","volume":"55 1","pages":"75-82"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Faster FFTs in Medium Precision\",\"authors\":\"J. Hoeven, Grégoire Lecerf\",\"doi\":\"10.1109/ARITH.2015.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show how to speed up the computation of fast Fourier transforms over complex numbers for \\\"medium\\\" precisions, typically in the range from 100 until 400 bits. On the one hand, such precisions are usually not supported by hardware. On the other hand, asymptotically fast algorithms for multiple precision arithmetic do not pay off yet. The main idea behind our algorithms is to develop efficient vectorial multiple precision fixed point arithmetic, capable of exploiting SIMD instructions in modern processors.\",\"PeriodicalId\":6526,\"journal\":{\"name\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"volume\":\"55 1\",\"pages\":\"75-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2015.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2015.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们展示了如何加速“中等”精度的复数快速傅里叶变换的计算,通常在100到400比特的范围内。一方面,这样的精度通常不受硬件的支持。另一方面,多精度算法的渐近快速算法还没有取得成功。我们的算法背后的主要思想是开发有效的矢量多精度定点算法,能够利用现代处理器中的SIMD指令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster FFTs in Medium Precision
In this paper, we show how to speed up the computation of fast Fourier transforms over complex numbers for "medium" precisions, typically in the range from 100 until 400 bits. On the one hand, such precisions are usually not supported by hardware. On the other hand, asymptotically fast algorithms for multiple precision arithmetic do not pay off yet. The main idea behind our algorithms is to develop efficient vectorial multiple precision fixed point arithmetic, capable of exploiting SIMD instructions in modern processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信