三维因果三角剖分的空间切片结构

IF 1.5 Q2 PHYSICS, MATHEMATICAL
B. Durhuus, T. Jonsson
{"title":"三维因果三角剖分的空间切片结构","authors":"B. Durhuus, T. Jonsson","doi":"10.4171/aihpd/91","DOIUrl":null,"url":null,"abstract":". We consider causal 3-dimensional triangulations with the topology of S 2 × [0 , 1] or D 2 × [0 , 1] where S 2 and D 2 are the 2-dimensional sphere and disc, respectively. These triangulations consist of slices and we show that these slices can be mapped bijectively onto a set of certain coloured 2-dimensional cell complexes satisfying simple conditions. The cell complexes arise as the cross section of the individual slices.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The structure of spatial slices of 3-dimensional causal triangulations\",\"authors\":\"B. Durhuus, T. Jonsson\",\"doi\":\"10.4171/aihpd/91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider causal 3-dimensional triangulations with the topology of S 2 × [0 , 1] or D 2 × [0 , 1] where S 2 and D 2 are the 2-dimensional sphere and disc, respectively. These triangulations consist of slices and we show that these slices can be mapped bijectively onto a set of certain coloured 2-dimensional cell complexes satisfying simple conditions. The cell complexes arise as the cross section of the individual slices.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpd/91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

. 我们考虑具有s2 ×[0,1]或d2 ×[0,1]拓扑的因果三维三角剖分,其中s2和d2分别是二维球体和圆盘。这些三角形由切片组成,我们表明这些切片可以双射地映射到满足简单条件的一组特定的彩色二维细胞复合体上。细胞复合体出现在单个切片的横截面上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The structure of spatial slices of 3-dimensional causal triangulations
. We consider causal 3-dimensional triangulations with the topology of S 2 × [0 , 1] or D 2 × [0 , 1] where S 2 and D 2 are the 2-dimensional sphere and disc, respectively. These triangulations consist of slices and we show that these slices can be mapped bijectively onto a set of certain coloured 2-dimensional cell complexes satisfying simple conditions. The cell complexes arise as the cross section of the individual slices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信