{"title":"闭三维黎曼流形上有界平均曲率的叶分","authors":"D. Bolotov","doi":"10.15673/pigc.v16i2.2510","DOIUrl":null,"url":null,"abstract":"The notion of systole of a foliation sys(ℱ) on an arbitrary foliated closed Riemannian manifold (M,ℱ) is introduced. A lower bound on sys(ℱ) of a bounded mean curvature foliation is given. As a corollary we prove that the number of Reeb components of a bounded mean curvature foliation on a closed oriented Riemannian 3-manifold M is bounded above by a constant depending on the volume, the radius of injectivity, and the maximum value of the sectional curvature of the manifold M.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On foliations of bounded mean curvature on closed three-dimensional Riemannian manifolds\",\"authors\":\"D. Bolotov\",\"doi\":\"10.15673/pigc.v16i2.2510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of systole of a foliation sys(ℱ) on an arbitrary foliated closed Riemannian manifold (M,ℱ) is introduced. A lower bound on sys(ℱ) of a bounded mean curvature foliation is given. As a corollary we prove that the number of Reeb components of a bounded mean curvature foliation on a closed oriented Riemannian 3-manifold M is bounded above by a constant depending on the volume, the radius of injectivity, and the maximum value of the sectional curvature of the manifold M.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/pigc.v16i2.2510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/pigc.v16i2.2510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
On foliations of bounded mean curvature on closed three-dimensional Riemannian manifolds
The notion of systole of a foliation sys(ℱ) on an arbitrary foliated closed Riemannian manifold (M,ℱ) is introduced. A lower bound on sys(ℱ) of a bounded mean curvature foliation is given. As a corollary we prove that the number of Reeb components of a bounded mean curvature foliation on a closed oriented Riemannian 3-manifold M is bounded above by a constant depending on the volume, the radius of injectivity, and the maximum value of the sectional curvature of the manifold M.