{"title":"基于监督学习的ABAC规则挖掘方法","authors":"G. Sahani, Chirag S. Thaker, Sanjay M. Shah","doi":"10.4108/eetsis.v5i16.1560","DOIUrl":null,"url":null,"abstract":"Attribute-Based Access Control (ABAC) is an emerging access control model. It is the more flexible, scalable, and most suitable access control model for today’s large-scale, distributed, and open application environments. It has become an emerging research area nowadays. However, Role-Based Access Control (RBAC) has been the most widely used and general access control model so far. It is simple in administration and policy definition. But user-to-role assignment process of RBAC makes it non-scalable for large-scale organizations with a large number of users. To scale up the growing organization, RBAC needs to be transformed into ABAC. Transforming existing RBAC systems into ABAC is complicated and time-consuming. In this paper, we present a supervised machine learning-based approach to extract attribute-based conditions from the existing RBAC system to construct ABAC rules at the primary level and simplify the process of the transforming RBAC system to ABAC.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised Learning-Based Approach Mining ABAC Rules from Existing RBAC Enabled Systems\",\"authors\":\"G. Sahani, Chirag S. Thaker, Sanjay M. Shah\",\"doi\":\"10.4108/eetsis.v5i16.1560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attribute-Based Access Control (ABAC) is an emerging access control model. It is the more flexible, scalable, and most suitable access control model for today’s large-scale, distributed, and open application environments. It has become an emerging research area nowadays. However, Role-Based Access Control (RBAC) has been the most widely used and general access control model so far. It is simple in administration and policy definition. But user-to-role assignment process of RBAC makes it non-scalable for large-scale organizations with a large number of users. To scale up the growing organization, RBAC needs to be transformed into ABAC. Transforming existing RBAC systems into ABAC is complicated and time-consuming. In this paper, we present a supervised machine learning-based approach to extract attribute-based conditions from the existing RBAC system to construct ABAC rules at the primary level and simplify the process of the transforming RBAC system to ABAC.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetsis.v5i16.1560\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v5i16.1560","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Supervised Learning-Based Approach Mining ABAC Rules from Existing RBAC Enabled Systems
Attribute-Based Access Control (ABAC) is an emerging access control model. It is the more flexible, scalable, and most suitable access control model for today’s large-scale, distributed, and open application environments. It has become an emerging research area nowadays. However, Role-Based Access Control (RBAC) has been the most widely used and general access control model so far. It is simple in administration and policy definition. But user-to-role assignment process of RBAC makes it non-scalable for large-scale organizations with a large number of users. To scale up the growing organization, RBAC needs to be transformed into ABAC. Transforming existing RBAC systems into ABAC is complicated and time-consuming. In this paper, we present a supervised machine learning-based approach to extract attribute-based conditions from the existing RBAC system to construct ABAC rules at the primary level and simplify the process of the transforming RBAC system to ABAC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.