{"title":"有效钻井控制的矿山地质力学机器学习模型","authors":"Hitler Juan Poma Cruz","doi":"10.26788/ri.v12i1.4311","DOIUrl":null,"url":null,"abstract":"El estudio se ha realizado en la Unidad Minera San Rafael, distrito Antauta, provincia Melgar, donde se identificó el problema para el modelo adecuado de machine learning en geomecánica minera para el control eficaz de perforación y voladura en labores de avance, siendo el objetivo principal evaluar los modelos machine learning en geomecánica minera para el control eficaz de perforación y voladura en labores de avance. Los datos de operación referidos a malla y longitud de perforación, tipo de agentes de voladura, tipo y sección de la labor, tipo de roca, mineral y desmonte, número de taladros, avance esperado, avance logrado, estructura, tipo de perforación, equipo y operador, todos estos datos se registraron en formato de reporte, consolidados ellas en una hoja de cálculo y exportados a programación lineal R, las muestras sirvieron para elaborar diferentes modelos, para ser analizados, evaluados y determinados los factores más importantes en el control de avance lineal de las labores de exploración, desarrollo y preparación, el estudio es de tipo descriptivo correlacional y diseño no experimental longitudinal, con los cuales se ha obtenido como resultado que nos permite identificar el objetivo que es el modelo de aprendizaje supervisado que es aplicable y aceptable, cuya conclusión es el uso de modelos de machine learning en el contexto es factible desde un punto de vista computacional, sin embargo, se requiere un fuerte trabajo adicional en la curatoría de datos.","PeriodicalId":32778,"journal":{"name":"ID Revista de Investigaciones","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELOS MACHINE LEARNING EN GEOMECÁNICA MINERA PARA EL CONTROL EFICAZ DE PERFORACIÓN\",\"authors\":\"Hitler Juan Poma Cruz\",\"doi\":\"10.26788/ri.v12i1.4311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El estudio se ha realizado en la Unidad Minera San Rafael, distrito Antauta, provincia Melgar, donde se identificó el problema para el modelo adecuado de machine learning en geomecánica minera para el control eficaz de perforación y voladura en labores de avance, siendo el objetivo principal evaluar los modelos machine learning en geomecánica minera para el control eficaz de perforación y voladura en labores de avance. Los datos de operación referidos a malla y longitud de perforación, tipo de agentes de voladura, tipo y sección de la labor, tipo de roca, mineral y desmonte, número de taladros, avance esperado, avance logrado, estructura, tipo de perforación, equipo y operador, todos estos datos se registraron en formato de reporte, consolidados ellas en una hoja de cálculo y exportados a programación lineal R, las muestras sirvieron para elaborar diferentes modelos, para ser analizados, evaluados y determinados los factores más importantes en el control de avance lineal de las labores de exploración, desarrollo y preparación, el estudio es de tipo descriptivo correlacional y diseño no experimental longitudinal, con los cuales se ha obtenido como resultado que nos permite identificar el objetivo que es el modelo de aprendizaje supervisado que es aplicable y aceptable, cuya conclusión es el uso de modelos de machine learning en el contexto es factible desde un punto de vista computacional, sin embargo, se requiere un fuerte trabajo adicional en la curatoría de datos.\",\"PeriodicalId\":32778,\"journal\":{\"name\":\"ID Revista de Investigaciones\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ID Revista de Investigaciones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26788/ri.v12i1.4311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ID Revista de Investigaciones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26788/ri.v12i1.4311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究进行了统一省San Rafael Antauta区的Melgar矿业,查明问题的适当的模型有效控制machine learning geomecánica采矿炸毁和钻探工作进步,主要目的是评估模型machine learning geomecánica采矿和钻探有效控制炸毁工作进展。操作和数据网格和钻孔长度、炸毁剂类型和类型部分矿物、岩石类型、工作和结算、机,期待已久的突破进展、钻孔类型、结构、设备和运营商,所有这些数据记录格式报告,其中综合在一张表格和出口的线性规划,R用样本,来制定不同的模型,要分析,评估和某些最重要因素控制线性前进的勘探、开发和防备工作,研究是描述性的纵向correlacional和实验设计不,已得到的结果使我们能够识别目标模式适用于接受监督学习其结论是,从计算的角度来看,在环境中使用机器学习模型是可行的,然而,在数据管理方面需要大量的额外工作。
MODELOS MACHINE LEARNING EN GEOMECÁNICA MINERA PARA EL CONTROL EFICAZ DE PERFORACIÓN
El estudio se ha realizado en la Unidad Minera San Rafael, distrito Antauta, provincia Melgar, donde se identificó el problema para el modelo adecuado de machine learning en geomecánica minera para el control eficaz de perforación y voladura en labores de avance, siendo el objetivo principal evaluar los modelos machine learning en geomecánica minera para el control eficaz de perforación y voladura en labores de avance. Los datos de operación referidos a malla y longitud de perforación, tipo de agentes de voladura, tipo y sección de la labor, tipo de roca, mineral y desmonte, número de taladros, avance esperado, avance logrado, estructura, tipo de perforación, equipo y operador, todos estos datos se registraron en formato de reporte, consolidados ellas en una hoja de cálculo y exportados a programación lineal R, las muestras sirvieron para elaborar diferentes modelos, para ser analizados, evaluados y determinados los factores más importantes en el control de avance lineal de las labores de exploración, desarrollo y preparación, el estudio es de tipo descriptivo correlacional y diseño no experimental longitudinal, con los cuales se ha obtenido como resultado que nos permite identificar el objetivo que es el modelo de aprendizaje supervisado que es aplicable y aceptable, cuya conclusión es el uso de modelos de machine learning en el contexto es factible desde un punto de vista computacional, sin embargo, se requiere un fuerte trabajo adicional en la curatoría de datos.