用于优化回溯解析器的语法转换

Janos J. Sarbo
{"title":"用于优化回溯解析器的语法转换","authors":"Janos J. Sarbo","doi":"10.1016/0096-0551(94)90016-7","DOIUrl":null,"url":null,"abstract":"<div><p>We present two grammar transformations which can decrease the search space of generated top-down backtrack parsers. The transformations are simple and can be of practical use.</p><p>The first transformation, which is a combination of substitution and left-factorization, is based on the LR-table construction. The second transformation uses the calculation of the sets <em>FIRST</em> and <em>FOLLOW</em>, and a grammar property, called <em>rrelative unambiguity</em>.</p><p>The time complexity of the transformations is worst case polynomial and in practical cases linear in the size of the grammar.</p></div>","PeriodicalId":100315,"journal":{"name":"Computer Languages","volume":"20 2","pages":"Pages 89-100"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0096-0551(94)90016-7","citationCount":"5","resultStr":"{\"title\":\"Grammar transformations for optimizing backtrack parsers\",\"authors\":\"Janos J. Sarbo\",\"doi\":\"10.1016/0096-0551(94)90016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present two grammar transformations which can decrease the search space of generated top-down backtrack parsers. The transformations are simple and can be of practical use.</p><p>The first transformation, which is a combination of substitution and left-factorization, is based on the LR-table construction. The second transformation uses the calculation of the sets <em>FIRST</em> and <em>FOLLOW</em>, and a grammar property, called <em>rrelative unambiguity</em>.</p><p>The time complexity of the transformations is worst case polynomial and in practical cases linear in the size of the grammar.</p></div>\",\"PeriodicalId\":100315,\"journal\":{\"name\":\"Computer Languages\",\"volume\":\"20 2\",\"pages\":\"Pages 89-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0096-0551(94)90016-7\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0096055194900167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Languages","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0096055194900167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了两种语法转换,可以减少生成的自顶向下回溯解析器的搜索空间。转换很简单,并且可以实际使用。第一个变换是替换和左分解的组合,它基于lr表构造。第二个转换使用集合FIRST和FOLLOW的计算,以及称为相对无歧义的语法属性。变换的时间复杂度在最坏情况下是多项式,在实际情况下是语法大小的线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grammar transformations for optimizing backtrack parsers

We present two grammar transformations which can decrease the search space of generated top-down backtrack parsers. The transformations are simple and can be of practical use.

The first transformation, which is a combination of substitution and left-factorization, is based on the LR-table construction. The second transformation uses the calculation of the sets FIRST and FOLLOW, and a grammar property, called rrelative unambiguity.

The time complexity of the transformations is worst case polynomial and in practical cases linear in the size of the grammar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信