完全极小曲面的高斯映射空间

A. Alarcón, F. Lárusson
{"title":"完全极小曲面的高斯映射空间","authors":"A. Alarcón, F. Lárusson","doi":"10.2422/2036-2145.202205_015","DOIUrl":null,"url":null,"abstract":"The Gauss map of a conformal minimal immersion of an open Riemann surface M into R 3 is a meromorphic function on M . In this paper, we prove that the Gauss map assignment, taking a full conformal minimal immersion M → R 3 to its Gauss map, is a Serre fibration. We then determine the homotopy type of the space of meromorphic functions on M that are the Gauss map of a complete full conformal minimal immersion, and show that it is the same as the homotopy type of the space of all continuous maps from M to the 2-sphere. We obtain analogous results for the generalised Gauss map of conformal minimal immersions M → R n for arbitrary n ≥ 3.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The space of Gauss maps of complete minimal surfaces\",\"authors\":\"A. Alarcón, F. Lárusson\",\"doi\":\"10.2422/2036-2145.202205_015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gauss map of a conformal minimal immersion of an open Riemann surface M into R 3 is a meromorphic function on M . In this paper, we prove that the Gauss map assignment, taking a full conformal minimal immersion M → R 3 to its Gauss map, is a Serre fibration. We then determine the homotopy type of the space of meromorphic functions on M that are the Gauss map of a complete full conformal minimal immersion, and show that it is the same as the homotopy type of the space of all continuous maps from M to the 2-sphere. We obtain analogous results for the generalised Gauss map of conformal minimal immersions M → R n for arbitrary n ≥ 3.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202205_015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202205_015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开放黎曼曲面M在r3中的保形极小浸入的高斯映射是M上的亚纯函数。在本文中,我们证明了高斯映射分配是一个Serre振动,即高斯映射取一个完全共形最小浸入M→R 3。然后,我们确定了M上的亚纯函数空间的同伦类型,这些亚纯函数是完全的满共形最小浸没的高斯映射,并证明了它与从M到2球的所有连续映射的空间的同伦类型相同。对于任意n≥3的保形最小浸入M→R n的广义高斯映射,我们得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The space of Gauss maps of complete minimal surfaces
The Gauss map of a conformal minimal immersion of an open Riemann surface M into R 3 is a meromorphic function on M . In this paper, we prove that the Gauss map assignment, taking a full conformal minimal immersion M → R 3 to its Gauss map, is a Serre fibration. We then determine the homotopy type of the space of meromorphic functions on M that are the Gauss map of a complete full conformal minimal immersion, and show that it is the same as the homotopy type of the space of all continuous maps from M to the 2-sphere. We obtain analogous results for the generalised Gauss map of conformal minimal immersions M → R n for arbitrary n ≥ 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信