低增益光电探测器的空差飞行时间声光成像。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Biomedical Engineering Letters Pub Date : 2022-11-19 eCollection Date: 2023-02-01 DOI:10.1007/s13534-022-00252-w
Ahiad R Levi, Yoav Hazan, Aner Lev, Bruno G Sfez, Amir Rosenthal
{"title":"低增益光电探测器的空差飞行时间声光成像。","authors":"Ahiad R Levi, Yoav Hazan, Aner Lev, Bruno G Sfez, Amir Rosenthal","doi":"10.1007/s13534-022-00252-w","DOIUrl":null,"url":null,"abstract":"<p><p>Acousto-optics imaging (AOI) is a hybrid imaging modality that is capable of mapping the light fluence rate in deep tissue by local ultrasound modulation of the diffused photons. Since the intensity of the modulated photons is relatively low, AOI systems often rely on high-gain photodetectors, e.g. photomultiplier tubes (PMTs), which limit scalability due to size and cost and may significantly increase the relative shot-noise in the detected signal due to low quantum yields or gain noise. In this work, we have developed a homodyne AOI scheme in which the modulated photons are amplified by interference with a reference beam, enabling their detection with a single low-gain photodetector in reflection-mode configuration. We experimentally demonstrate our approach with a silicon photodiode, achieving over a 4-fold improvement in SNR in comparison to a PMT-based setup. The increased SNR manifested in lower background noise level thus enabling deeper imaging depths. The use of a fiber-based configuration enables the integration of our scheme in a hand-held AOI probe.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 1","pages":"49-56"},"PeriodicalIF":3.2000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873866/pdf/","citationCount":"0","resultStr":"{\"title\":\"Homodyne time-of-flight acousto-optic imaging for low-gain photodetector.\",\"authors\":\"Ahiad R Levi, Yoav Hazan, Aner Lev, Bruno G Sfez, Amir Rosenthal\",\"doi\":\"10.1007/s13534-022-00252-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acousto-optics imaging (AOI) is a hybrid imaging modality that is capable of mapping the light fluence rate in deep tissue by local ultrasound modulation of the diffused photons. Since the intensity of the modulated photons is relatively low, AOI systems often rely on high-gain photodetectors, e.g. photomultiplier tubes (PMTs), which limit scalability due to size and cost and may significantly increase the relative shot-noise in the detected signal due to low quantum yields or gain noise. In this work, we have developed a homodyne AOI scheme in which the modulated photons are amplified by interference with a reference beam, enabling their detection with a single low-gain photodetector in reflection-mode configuration. We experimentally demonstrate our approach with a silicon photodiode, achieving over a 4-fold improvement in SNR in comparison to a PMT-based setup. The increased SNR manifested in lower background noise level thus enabling deeper imaging depths. The use of a fiber-based configuration enables the integration of our scheme in a hand-held AOI probe.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"13 1\",\"pages\":\"49-56\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-022-00252-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-022-00252-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

声光成像(AOI)是一种混合成像方式,能够通过局部超声调制扩散光子来绘制深层组织中的光通量。由于调制光子的强度相对较低,AOI系统通常依赖于高增益光电探测器,例如光电倍增管(pmt),由于尺寸和成本限制了可扩展性,并且由于低量子产率或增益噪声可能显着增加检测信号中的相对短噪声。在这项工作中,我们开发了一种纯差AOI方案,其中调制光子通过干涉参考光束放大,使其能够在反射模式配置下使用单个低增益光电探测器进行检测。我们用硅光电二极管实验证明了我们的方法,与基于pmt的设置相比,信噪比提高了4倍以上。增加的信噪比表现在更低的背景噪声水平,从而实现更深的成像深度。使用基于光纤的配置可以将我们的方案集成到手持式AOI探针中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homodyne time-of-flight acousto-optic imaging for low-gain photodetector.

Acousto-optics imaging (AOI) is a hybrid imaging modality that is capable of mapping the light fluence rate in deep tissue by local ultrasound modulation of the diffused photons. Since the intensity of the modulated photons is relatively low, AOI systems often rely on high-gain photodetectors, e.g. photomultiplier tubes (PMTs), which limit scalability due to size and cost and may significantly increase the relative shot-noise in the detected signal due to low quantum yields or gain noise. In this work, we have developed a homodyne AOI scheme in which the modulated photons are amplified by interference with a reference beam, enabling their detection with a single low-gain photodetector in reflection-mode configuration. We experimentally demonstrate our approach with a silicon photodiode, achieving over a 4-fold improvement in SNR in comparison to a PMT-based setup. The increased SNR manifested in lower background noise level thus enabling deeper imaging depths. The use of a fiber-based configuration enables the integration of our scheme in a hand-held AOI probe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信