{"title":"对过分散计数数据建模的两个有用的离散分布","authors":"J. Mazucheli, Wesley Bertoli, R. P. Oliveira","doi":"10.15446/RCE.V43N1.77052","DOIUrl":null,"url":null,"abstract":"The methods to obtain discrete analogues of continuous distributions have been widely considered in recent years. In general, the discretization process provides probability mass functions that can be competitive with the traditional model used in the analysis of count data, the Poisson distribution. The discretization procedure also avoids the use of continuous distribution in the analysis of strictly discrete data. In this paper, we seek to introduce two discrete analogues for the Shanker distribution using the method of the infinite series and the method based on the survival function as alternatives to model overdispersed datasets. Despite the difference between discretization methods, the resulting distributions are interchangeable. However, the distribution generated by the method of infinite series method has simpler mathematical expressions for the shape, the generating functions and the central moments. The maximum likelihood theory is considered for estimation and asymptotic inference concerns. A simulation study is carried out in order to evaluate some frequentist properties of the developed methodology. The usefulness of the proposed models is evaluated using real datasets provided by the literature.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":"41 1","pages":"21-48"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Two Useful Discrete Distributions to Model Overdispersed Count Data\",\"authors\":\"J. Mazucheli, Wesley Bertoli, R. P. Oliveira\",\"doi\":\"10.15446/RCE.V43N1.77052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methods to obtain discrete analogues of continuous distributions have been widely considered in recent years. In general, the discretization process provides probability mass functions that can be competitive with the traditional model used in the analysis of count data, the Poisson distribution. The discretization procedure also avoids the use of continuous distribution in the analysis of strictly discrete data. In this paper, we seek to introduce two discrete analogues for the Shanker distribution using the method of the infinite series and the method based on the survival function as alternatives to model overdispersed datasets. Despite the difference between discretization methods, the resulting distributions are interchangeable. However, the distribution generated by the method of infinite series method has simpler mathematical expressions for the shape, the generating functions and the central moments. The maximum likelihood theory is considered for estimation and asymptotic inference concerns. A simulation study is carried out in order to evaluate some frequentist properties of the developed methodology. The usefulness of the proposed models is evaluated using real datasets provided by the literature.\",\"PeriodicalId\":54477,\"journal\":{\"name\":\"Revista Colombiana De Estadistica\",\"volume\":\"41 1\",\"pages\":\"21-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana De Estadistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RCE.V43N1.77052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V43N1.77052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Two Useful Discrete Distributions to Model Overdispersed Count Data
The methods to obtain discrete analogues of continuous distributions have been widely considered in recent years. In general, the discretization process provides probability mass functions that can be competitive with the traditional model used in the analysis of count data, the Poisson distribution. The discretization procedure also avoids the use of continuous distribution in the analysis of strictly discrete data. In this paper, we seek to introduce two discrete analogues for the Shanker distribution using the method of the infinite series and the method based on the survival function as alternatives to model overdispersed datasets. Despite the difference between discretization methods, the resulting distributions are interchangeable. However, the distribution generated by the method of infinite series method has simpler mathematical expressions for the shape, the generating functions and the central moments. The maximum likelihood theory is considered for estimation and asymptotic inference concerns. A simulation study is carried out in order to evaluate some frequentist properties of the developed methodology. The usefulness of the proposed models is evaluated using real datasets provided by the literature.
期刊介绍:
The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication.
The Editorial Committee assumes that the works submitted for evaluation
have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.