时间优先队列中的最优决策

Q3 Mathematics
Ryan Francis Donnelly, Luhui Gan
{"title":"时间优先队列中的最优决策","authors":"Ryan Francis Donnelly, Luhui Gan","doi":"10.1080/1350486X.2018.1506257","DOIUrl":null,"url":null,"abstract":"ABSTRACT We show how the position of a limit order (LO) in the queue influences the decision of whether to cancel the order or let it rest. Using ultra-high-frequency data from the Nasdaq exchange, we perform empirical analysis on various LO book events and propose novel ways for modelling some of these events, including cancellation of LOs in various positions and size of market orders. Based on our empirical findings, we develop a queuing model that captures stylized facts on the data. This model includes a distinct feature which allows for a potentially random effect due to the agent’s impulse control. We apply the queuing model in an algorithmic trading setting by considering an agent maximizing her expected utility through placing and cancelling of LOs. The agent’s optimal strategy is presented after calibrating the model to real data. A simulation study shows that for the same level of standard deviation of terminal wealth, the optimal strategy has a 2.5% higher mean compared to a strategy which ignores the effect of position, or an 8.8% lower standard deviation for the same level of mean. This extra gain stems from posting an LO during adverse conditions and obtaining a good queue position before conditions become favourable.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"5 1","pages":"107 - 147"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimal Decisions in a Time Priority Queue\",\"authors\":\"Ryan Francis Donnelly, Luhui Gan\",\"doi\":\"10.1080/1350486X.2018.1506257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We show how the position of a limit order (LO) in the queue influences the decision of whether to cancel the order or let it rest. Using ultra-high-frequency data from the Nasdaq exchange, we perform empirical analysis on various LO book events and propose novel ways for modelling some of these events, including cancellation of LOs in various positions and size of market orders. Based on our empirical findings, we develop a queuing model that captures stylized facts on the data. This model includes a distinct feature which allows for a potentially random effect due to the agent’s impulse control. We apply the queuing model in an algorithmic trading setting by considering an agent maximizing her expected utility through placing and cancelling of LOs. The agent’s optimal strategy is presented after calibrating the model to real data. A simulation study shows that for the same level of standard deviation of terminal wealth, the optimal strategy has a 2.5% higher mean compared to a strategy which ignores the effect of position, or an 8.8% lower standard deviation for the same level of mean. This extra gain stems from posting an LO during adverse conditions and obtaining a good queue position before conditions become favourable.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"5 1\",\"pages\":\"107 - 147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2018.1506257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1506257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

摘要

摘要本文展示了限价订单在队列中的位置如何影响取消订单或搁置订单的决策。利用来自纳斯达克交易所的超高频数据,我们对各种账面损失事件进行了实证分析,并提出了对其中一些事件建模的新方法,包括各种头寸的账面损失取消和市场订单的规模。基于我们的经验发现,我们开发了一个排队模型,可以捕获数据上的程式化事实。这个模型包含一个独特的特征,它允许一个潜在的随机效应,由于代理的脉冲控制。我们将排队模型应用于算法交易环境中,考虑代理通过放置和取消LOs来最大化其期望效用。将模型与实际数据进行校正后,给出了智能体的最优策略。仿真研究表明,在相同的终端财富标准差水平下,最优策略的均值比不考虑头寸影响的策略高2.5%,在相同的均值水平下,最优策略的标准差比不考虑头寸影响的策略低8.8%。这种额外的增益源于在不利条件下张贴LO和在条件变得有利之前获得良好的队列位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Decisions in a Time Priority Queue
ABSTRACT We show how the position of a limit order (LO) in the queue influences the decision of whether to cancel the order or let it rest. Using ultra-high-frequency data from the Nasdaq exchange, we perform empirical analysis on various LO book events and propose novel ways for modelling some of these events, including cancellation of LOs in various positions and size of market orders. Based on our empirical findings, we develop a queuing model that captures stylized facts on the data. This model includes a distinct feature which allows for a potentially random effect due to the agent’s impulse control. We apply the queuing model in an algorithmic trading setting by considering an agent maximizing her expected utility through placing and cancelling of LOs. The agent’s optimal strategy is presented after calibrating the model to real data. A simulation study shows that for the same level of standard deviation of terminal wealth, the optimal strategy has a 2.5% higher mean compared to a strategy which ignores the effect of position, or an 8.8% lower standard deviation for the same level of mean. This extra gain stems from posting an LO during adverse conditions and obtaining a good queue position before conditions become favourable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信