{"title":"BN、BP、AlN和AlP类石墨烯结构四极偶联常数的密度泛函探索","authors":"M. Mirzaei, R. S. Ahangari","doi":"10.7508/IJND.2016.04.003","DOIUrl":null,"url":null,"abstract":"Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ parameters. The results of optimizations indicated that the formations, polarities, and semiconducting properties of BN G–monolayer are more favorable than other investigated G–monolayers. Moreover, the atomic level CQ parameters also indicated that the atoms at the tips of monolayers have the most activities among other atoms and different properties have been seen for the atoms at different positions of monolayers. Differences of electronegativities are also important for the magnitudes of CQ properties as could be seen by larger values of CQ parameters for B and Al atoms in the BN and AlN G–monolayers in comparison with BP and AlP G–monolayers.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures\",\"authors\":\"M. Mirzaei, R. S. Ahangari\",\"doi\":\"10.7508/IJND.2016.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ parameters. The results of optimizations indicated that the formations, polarities, and semiconducting properties of BN G–monolayer are more favorable than other investigated G–monolayers. Moreover, the atomic level CQ parameters also indicated that the atoms at the tips of monolayers have the most activities among other atoms and different properties have been seen for the atoms at different positions of monolayers. Differences of electronegativities are also important for the magnitudes of CQ properties as could be seen by larger values of CQ parameters for B and Al atoms in the BN and AlN G–monolayers in comparison with BP and AlP G–monolayers.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2016.04.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures
Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ parameters. The results of optimizations indicated that the formations, polarities, and semiconducting properties of BN G–monolayer are more favorable than other investigated G–monolayers. Moreover, the atomic level CQ parameters also indicated that the atoms at the tips of monolayers have the most activities among other atoms and different properties have been seen for the atoms at different positions of monolayers. Differences of electronegativities are also important for the magnitudes of CQ properties as could be seen by larger values of CQ parameters for B and Al atoms in the BN and AlN G–monolayers in comparison with BP and AlP G–monolayers.