基于TQWT和集成学习的脑电信号癫痫发作检测

Navid Ghassemi, A. Shoeibi, M. Rouhani, Hossein Hosseini-Nejad
{"title":"基于TQWT和集成学习的脑电信号癫痫发作检测","authors":"Navid Ghassemi, A. Shoeibi, M. Rouhani, Hossein Hosseini-Nejad","doi":"10.1109/ICCKE48569.2019.8964826","DOIUrl":null,"url":null,"abstract":"In this paper, a new scheme for diagnosis of epileptic seizures in EEG signals using Tunable-Q wavelet transform (TQWT) framework is proposed and benchmarked with Bonn dataset. First, a segmentation of the EEG signals into smaller windows is performed, then a high-pass Butterworth filter with a cutoff frequency of 0.5 Hz is applied to eliminate possible noise. After that, a TQWT with parameters J=8, r=3, Q=1 has been utilized for decomposing the segmented EEG Signals into nine sub-bands. Next, a combination of statistical, entropy-based, and fractal dimension features are extracted from each sub-band. Finally, different ensemble learning-based classifiers, specifically, Adaboost, Gradient Boosting (GB), Hist Gradient Boosting (HistGB), and Random Forest (RF) are employed to classify signals. Also, a feature ranking is driven from classifiers to further analyze the importance of each feature in this particular task. Comparing our method to previous ones, introduced scheme outperforms most of the state-of-the-art works in this field, indicating the effectiveness of the proposed epileptic seizures detection method.","PeriodicalId":6685,"journal":{"name":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"48 1","pages":"403-408"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Epileptic seizures detection in EEG signals using TQWT and ensemble learning\",\"authors\":\"Navid Ghassemi, A. Shoeibi, M. Rouhani, Hossein Hosseini-Nejad\",\"doi\":\"10.1109/ICCKE48569.2019.8964826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new scheme for diagnosis of epileptic seizures in EEG signals using Tunable-Q wavelet transform (TQWT) framework is proposed and benchmarked with Bonn dataset. First, a segmentation of the EEG signals into smaller windows is performed, then a high-pass Butterworth filter with a cutoff frequency of 0.5 Hz is applied to eliminate possible noise. After that, a TQWT with parameters J=8, r=3, Q=1 has been utilized for decomposing the segmented EEG Signals into nine sub-bands. Next, a combination of statistical, entropy-based, and fractal dimension features are extracted from each sub-band. Finally, different ensemble learning-based classifiers, specifically, Adaboost, Gradient Boosting (GB), Hist Gradient Boosting (HistGB), and Random Forest (RF) are employed to classify signals. Also, a feature ranking is driven from classifiers to further analyze the importance of each feature in this particular task. Comparing our method to previous ones, introduced scheme outperforms most of the state-of-the-art works in this field, indicating the effectiveness of the proposed epileptic seizures detection method.\",\"PeriodicalId\":6685,\"journal\":{\"name\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"48 1\",\"pages\":\"403-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE48569.2019.8964826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE48569.2019.8964826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文提出了一种基于可调q小波变换(TQWT)框架的脑电信号癫痫发作诊断新方案,并利用波恩数据集进行了基准测试。首先,将EEG信号分割成较小的窗口,然后应用截止频率为0.5 Hz的高通巴特沃斯滤波器来消除可能的噪声。然后,利用参数J=8, r=3, Q=1的TQWT将分割后的脑电信号分解为9个子带。接下来,从每个子带中提取统计、基于熵和分形维数的组合特征。最后,采用不同的基于集成学习的分类器Adaboost、Gradient Boosting (GB)、Hist Gradient Boosting (HistGB)和Random Forest (RF)对信号进行分类。此外,从分类器中驱动特征排序,以进一步分析每个特征在该特定任务中的重要性。将我们的方法与之前的方法进行比较,所介绍的方案优于该领域的大多数最新工作,表明所提出的癫痫发作检测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic seizures detection in EEG signals using TQWT and ensemble learning
In this paper, a new scheme for diagnosis of epileptic seizures in EEG signals using Tunable-Q wavelet transform (TQWT) framework is proposed and benchmarked with Bonn dataset. First, a segmentation of the EEG signals into smaller windows is performed, then a high-pass Butterworth filter with a cutoff frequency of 0.5 Hz is applied to eliminate possible noise. After that, a TQWT with parameters J=8, r=3, Q=1 has been utilized for decomposing the segmented EEG Signals into nine sub-bands. Next, a combination of statistical, entropy-based, and fractal dimension features are extracted from each sub-band. Finally, different ensemble learning-based classifiers, specifically, Adaboost, Gradient Boosting (GB), Hist Gradient Boosting (HistGB), and Random Forest (RF) are employed to classify signals. Also, a feature ranking is driven from classifiers to further analyze the importance of each feature in this particular task. Comparing our method to previous ones, introduced scheme outperforms most of the state-of-the-art works in this field, indicating the effectiveness of the proposed epileptic seizures detection method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信