Jiyoon Jung, Jinsuk Ku, Young Sang Park, C. Ahn, Jung-Hyun Lee, S. Hwang, Albert S. Lee
{"title":"高温聚合物电解质膜燃料电池离子导电膜及粘结剂研究进展","authors":"Jiyoon Jung, Jinsuk Ku, Young Sang Park, C. Ahn, Jung-Hyun Lee, S. Hwang, Albert S. Lee","doi":"10.1080/15583724.2022.2025602","DOIUrl":null,"url":null,"abstract":"Abstract This review article provides an overview of the latest developments in polymer electrolytes, the ion conducting membrane and ionomeric binder, specially tailored for high temperature polymer electrolyte membrane fuel cells that operate at temperatures exceeding 100 °C without the assistance of humidification. This particular type of fuel cell have the added advantages of high CO tolerance, enhanced catalytic activity, and system simplification. While high temperature polymer electrolyte membrane fuel cells utilizing phosphoric acid-doped polybenzimidazole membranes have been extensively investigated and commercialized over the past half century, recent developments in alternative polymeric materials and their synergistic integration with newly applied ionomeric materials have been introduced, warranting a closer look at the chemistry and properties of such materials in conjunction with those developed previously. General background in high temperature polymer electrolyte membrane fuel cells, and as well as developments in various classification of membranes, ionomers, concluding with future challenges and outlook on high temperature polymer electrolyte membrane and ionomer technology is addressed from the vantage point of the membrane electrode assembly.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"62 1","pages":"789 - 825"},"PeriodicalIF":11.1000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Advances in Ion Conducting Membranes and Binders for High Temperature Polymer Electrolyte Membrane Fuel Cells\",\"authors\":\"Jiyoon Jung, Jinsuk Ku, Young Sang Park, C. Ahn, Jung-Hyun Lee, S. Hwang, Albert S. Lee\",\"doi\":\"10.1080/15583724.2022.2025602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This review article provides an overview of the latest developments in polymer electrolytes, the ion conducting membrane and ionomeric binder, specially tailored for high temperature polymer electrolyte membrane fuel cells that operate at temperatures exceeding 100 °C without the assistance of humidification. This particular type of fuel cell have the added advantages of high CO tolerance, enhanced catalytic activity, and system simplification. While high temperature polymer electrolyte membrane fuel cells utilizing phosphoric acid-doped polybenzimidazole membranes have been extensively investigated and commercialized over the past half century, recent developments in alternative polymeric materials and their synergistic integration with newly applied ionomeric materials have been introduced, warranting a closer look at the chemistry and properties of such materials in conjunction with those developed previously. General background in high temperature polymer electrolyte membrane fuel cells, and as well as developments in various classification of membranes, ionomers, concluding with future challenges and outlook on high temperature polymer electrolyte membrane and ionomer technology is addressed from the vantage point of the membrane electrode assembly.\",\"PeriodicalId\":20326,\"journal\":{\"name\":\"Polymer Reviews\",\"volume\":\"62 1\",\"pages\":\"789 - 825\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15583724.2022.2025602\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2022.2025602","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Advances in Ion Conducting Membranes and Binders for High Temperature Polymer Electrolyte Membrane Fuel Cells
Abstract This review article provides an overview of the latest developments in polymer electrolytes, the ion conducting membrane and ionomeric binder, specially tailored for high temperature polymer electrolyte membrane fuel cells that operate at temperatures exceeding 100 °C without the assistance of humidification. This particular type of fuel cell have the added advantages of high CO tolerance, enhanced catalytic activity, and system simplification. While high temperature polymer electrolyte membrane fuel cells utilizing phosphoric acid-doped polybenzimidazole membranes have been extensively investigated and commercialized over the past half century, recent developments in alternative polymeric materials and their synergistic integration with newly applied ionomeric materials have been introduced, warranting a closer look at the chemistry and properties of such materials in conjunction with those developed previously. General background in high temperature polymer electrolyte membrane fuel cells, and as well as developments in various classification of membranes, ionomers, concluding with future challenges and outlook on high temperature polymer electrolyte membrane and ionomer technology is addressed from the vantage point of the membrane electrode assembly.
期刊介绍:
Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers.
The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.