面向无监督学习的深度神经网络可视化

Alexander Bartler, Darius Hinderer, Bin Yang
{"title":"面向无监督学习的深度神经网络可视化","authors":"Alexander Bartler, Darius Hinderer, Bin Yang","doi":"10.23919/Eusipco47968.2020.9287730","DOIUrl":null,"url":null,"abstract":"Nowadays, the explainability of deep neural networks is an essential part of machine learning. In the last years, many methods were developed to visualize important regions of an input image for the decision of the deep neural network. Since almost all methods are designed for supervised trained models, we propose in this work a visualization technique for unsupervised trained autoencoders called Gradient-weighted Latent Activation Mapping (Grad-LAM). We adapt the idea of Grad-CAM and propose a novel weighting based on the knowledge of the autoencoder’s decoder. Our method will help to get insights into the highly nonlinear mapping of an input image to a latent space. We show that the visualization maps of Grad-LAM are meaningful on simple datasets like MNIST and the method is even applicable to real-world datasets like ImageNet.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"68 1","pages":"1407-1411"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Grad-LAM: Visualization of Deep Neural Networks for Unsupervised Learning\",\"authors\":\"Alexander Bartler, Darius Hinderer, Bin Yang\",\"doi\":\"10.23919/Eusipco47968.2020.9287730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the explainability of deep neural networks is an essential part of machine learning. In the last years, many methods were developed to visualize important regions of an input image for the decision of the deep neural network. Since almost all methods are designed for supervised trained models, we propose in this work a visualization technique for unsupervised trained autoencoders called Gradient-weighted Latent Activation Mapping (Grad-LAM). We adapt the idea of Grad-CAM and propose a novel weighting based on the knowledge of the autoencoder’s decoder. Our method will help to get insights into the highly nonlinear mapping of an input image to a latent space. We show that the visualization maps of Grad-LAM are meaningful on simple datasets like MNIST and the method is even applicable to real-world datasets like ImageNet.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"68 1\",\"pages\":\"1407-1411\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,深度神经网络的可解释性是机器学习的重要组成部分。在过去的几年里,人们开发了许多方法来可视化输入图像的重要区域,以便深度神经网络的决策。由于几乎所有的方法都是为有监督训练的模型设计的,我们在这项工作中提出了一种无监督训练的自编码器的可视化技术,称为梯度加权潜在激活映射(Grad-LAM)。我们采用了Grad-CAM的思想,提出了一种新的基于自编码器解码器知识的加权方法。我们的方法将有助于深入了解输入图像到潜在空间的高度非线性映射。我们证明了Grad-LAM的可视化地图在像MNIST这样的简单数据集上是有意义的,并且该方法甚至适用于像ImageNet这样的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grad-LAM: Visualization of Deep Neural Networks for Unsupervised Learning
Nowadays, the explainability of deep neural networks is an essential part of machine learning. In the last years, many methods were developed to visualize important regions of an input image for the decision of the deep neural network. Since almost all methods are designed for supervised trained models, we propose in this work a visualization technique for unsupervised trained autoencoders called Gradient-weighted Latent Activation Mapping (Grad-LAM). We adapt the idea of Grad-CAM and propose a novel weighting based on the knowledge of the autoencoder’s decoder. Our method will help to get insights into the highly nonlinear mapping of an input image to a latent space. We show that the visualization maps of Grad-LAM are meaningful on simple datasets like MNIST and the method is even applicable to real-world datasets like ImageNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信