路径与环的笛卡尔积的总Roman $\{2\}$-支配数的算法方面

IF 1.8 4区 管理学 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Qin Chen
{"title":"路径与环的笛卡尔积的总Roman $\\{2\\}$-支配数的算法方面","authors":"Qin Chen","doi":"10.1051/ro/2023121","DOIUrl":null,"url":null,"abstract":"A total Roman $\\{2\\}$-dominating function (TR2DF) on a graph $G$ with vertex set $V$ is a function $f: V\\rightarrow \\{0,1,2\\}$ having the  property that for every vertex $v$ with $f(v)=0$, $\\sum_{u\\in N(v)}f(u)\\geq 2$, where $N(v)$ represents the open neighborhood of $v$, and  the subgraph of $G$ induced by the set of vertices with $f(v)>0$ has no isolated vertex. The weight of a TR2DF $f$ is the value $w(f)=\\sum_{v\\in V} f(v)$, and the minimum weight of a TR2DF of $G$ is the total Roman $\\{2\\}$-domination number $\\gamma_{tR2}(G)$. The total Roman $\\{2\\}$-domination problem (TR2DP) is to determine the value $\\gamma_{tR2}(G)$. In this paper, we first propose an integer linear programming (ILP) formulation for the TR2DP. Furthermore, we apply the discharging approach to determine the total Roman $\\{2\\}$-domination number for some Cartesian products of paths and cycles.","PeriodicalId":54509,"journal":{"name":"Rairo-Operations Research","volume":"54 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm aspect on total Roman $\\\\{2\\\\}$-domination number of Cartesian products of paths and cycles\",\"authors\":\"Qin Chen\",\"doi\":\"10.1051/ro/2023121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A total Roman $\\\\{2\\\\}$-dominating function (TR2DF) on a graph $G$ with vertex set $V$ is a function $f: V\\\\rightarrow \\\\{0,1,2\\\\}$ having the  property that for every vertex $v$ with $f(v)=0$, $\\\\sum_{u\\\\in N(v)}f(u)\\\\geq 2$, where $N(v)$ represents the open neighborhood of $v$, and  the subgraph of $G$ induced by the set of vertices with $f(v)>0$ has no isolated vertex. The weight of a TR2DF $f$ is the value $w(f)=\\\\sum_{v\\\\in V} f(v)$, and the minimum weight of a TR2DF of $G$ is the total Roman $\\\\{2\\\\}$-domination number $\\\\gamma_{tR2}(G)$. The total Roman $\\\\{2\\\\}$-domination problem (TR2DP) is to determine the value $\\\\gamma_{tR2}(G)$. In this paper, we first propose an integer linear programming (ILP) formulation for the TR2DP. Furthermore, we apply the discharging approach to determine the total Roman $\\\\{2\\\\}$-domination number for some Cartesian products of paths and cycles.\",\"PeriodicalId\":54509,\"journal\":{\"name\":\"Rairo-Operations Research\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rairo-Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023121\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rairo-Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1051/ro/2023121","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

$G$顶点集为$V$的图上的全罗马$\{2\}$支配函数(TR2DF)是一个$f: V\rightarrow \{0,1,2\}$函数,它具有这样的性质:对于$v$顶点集为$f(v)=0$, $\sum_{u\in N(v)}f(u)\geq 2$,其中$N(v)$表示$v$的开放邻域,由$f(v)>0$顶点集生成的$G$子图没有孤立顶点。TR2DF的权重$f$为$w(f)=\sum_{v\in V} f(v)$, $G$的最小权重为罗马字母$\{2\}$ -支配数的总和$\gamma_{tR2}(G)$。总罗马$\{2\}$ -支配问题(TR2DP)是确定$\gamma_{tR2}(G)$的值。本文首先提出了TR2DP的整数线性规划(ILP)公式。此外,我们应用放电方法来确定一些路径和循环的笛卡尔积的总罗马$\{2\}$ -支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm aspect on total Roman $\{2\}$-domination number of Cartesian products of paths and cycles
A total Roman $\{2\}$-dominating function (TR2DF) on a graph $G$ with vertex set $V$ is a function $f: V\rightarrow \{0,1,2\}$ having the  property that for every vertex $v$ with $f(v)=0$, $\sum_{u\in N(v)}f(u)\geq 2$, where $N(v)$ represents the open neighborhood of $v$, and  the subgraph of $G$ induced by the set of vertices with $f(v)>0$ has no isolated vertex. The weight of a TR2DF $f$ is the value $w(f)=\sum_{v\in V} f(v)$, and the minimum weight of a TR2DF of $G$ is the total Roman $\{2\}$-domination number $\gamma_{tR2}(G)$. The total Roman $\{2\}$-domination problem (TR2DP) is to determine the value $\gamma_{tR2}(G)$. In this paper, we first propose an integer linear programming (ILP) formulation for the TR2DP. Furthermore, we apply the discharging approach to determine the total Roman $\{2\}$-domination number for some Cartesian products of paths and cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rairo-Operations Research
Rairo-Operations Research 管理科学-运筹学与管理科学
CiteScore
3.60
自引率
22.20%
发文量
206
审稿时长
>12 weeks
期刊介绍: RAIRO-Operations Research is an international journal devoted to high-level pure and applied research on all aspects of operations research. All papers published in RAIRO-Operations Research are critically refereed according to international standards. Any paper will either be accepted (possibly with minor revisions) either submitted to another evaluation (after a major revision) or rejected. Every effort will be made by the Editorial Board to ensure a first answer concerning a submitted paper within three months, and a final decision in a period of time not exceeding six months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信