{"title":"关于在度序列中强制3次重复的注意事项","authors":"Shimon Kogan","doi":"10.7151/dmgt.2376","DOIUrl":null,"url":null,"abstract":"In Caro, Shapira and Yuster [1] it is proven that for any graph G with at least 5 vertices, one can delete at most 6 vertices such that the subgraph obtained has at least three vertices with the same degree. Furthermore they show that for certain graphs one needs to remove at least 3 vertices in order that the resulting graph has at least 3 vertices of the same degree. In this note we prove that for any graph G with at least 5 vertices, one can delete at most 5 vertices such that the subgraph obtained has at least three vertices with the same degree. We also show that for any triangle-free graph G with at least 6 vertices, one can delete at most one vertex such that the subgraph obtained has at least three vertices with the same degree and this result is tight for triangle-free graphs.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"37 1","pages":"457-462"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on forcing 3-repetitions in degree sequences\",\"authors\":\"Shimon Kogan\",\"doi\":\"10.7151/dmgt.2376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Caro, Shapira and Yuster [1] it is proven that for any graph G with at least 5 vertices, one can delete at most 6 vertices such that the subgraph obtained has at least three vertices with the same degree. Furthermore they show that for certain graphs one needs to remove at least 3 vertices in order that the resulting graph has at least 3 vertices of the same degree. In this note we prove that for any graph G with at least 5 vertices, one can delete at most 5 vertices such that the subgraph obtained has at least three vertices with the same degree. We also show that for any triangle-free graph G with at least 6 vertices, one can delete at most one vertex such that the subgraph obtained has at least three vertices with the same degree and this result is tight for triangle-free graphs.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"37 1\",\"pages\":\"457-462\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2376\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2376","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A note on forcing 3-repetitions in degree sequences
In Caro, Shapira and Yuster [1] it is proven that for any graph G with at least 5 vertices, one can delete at most 6 vertices such that the subgraph obtained has at least three vertices with the same degree. Furthermore they show that for certain graphs one needs to remove at least 3 vertices in order that the resulting graph has at least 3 vertices of the same degree. In this note we prove that for any graph G with at least 5 vertices, one can delete at most 5 vertices such that the subgraph obtained has at least three vertices with the same degree. We also show that for any triangle-free graph G with at least 6 vertices, one can delete at most one vertex such that the subgraph obtained has at least three vertices with the same degree and this result is tight for triangle-free graphs.
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.