Mounir Lahlouh, Y. Chenoune, R. Blanc, J. Szewczyk, Nicolas Passat
{"title":"基于MRA的主动脉弓解剖特征:一种基于cnn的分割方法","authors":"Mounir Lahlouh, Y. Chenoune, R. Blanc, J. Szewczyk, Nicolas Passat","doi":"10.1109/ISBI52829.2022.9761708","DOIUrl":null,"url":null,"abstract":"Neurovascular pathologies are often treated with the help of imaging to guide catheters inside arteries. However, positioning a microcatheter into the aortic arch and threading it through blood vessels for embolization, mechanical thrombectomy or stenting is a challenging task. Indeed, adverse aortic arch anatomies are frequently encountered, especially when the aortic arch is dilated, or the supra-aortic branches are elongated and tortuous. In this article, we propose a pipeline using convolutional neural networks for the segmentation of the aortic arch from magnetic resonance images for further anatomy classification purpose. This pipeline is composed of two successive modules, dedicated to the localization and the accurate segmentation of the aortic arch and the origin of supra-aortic branches, respectively. These segmentations are then used to generate 3D models from which the anatomy and the type of the aortic arches can be characterized. A quantitative evaluation of this approach, carried out on various U-Net architectures and different optimizers, leads to satisfactory segmentation results, then allowing a reliable characterization.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Aortic Arch Anatomy Characterization from MRA: A CNN-Based Segmentation Approach\",\"authors\":\"Mounir Lahlouh, Y. Chenoune, R. Blanc, J. Szewczyk, Nicolas Passat\",\"doi\":\"10.1109/ISBI52829.2022.9761708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurovascular pathologies are often treated with the help of imaging to guide catheters inside arteries. However, positioning a microcatheter into the aortic arch and threading it through blood vessels for embolization, mechanical thrombectomy or stenting is a challenging task. Indeed, adverse aortic arch anatomies are frequently encountered, especially when the aortic arch is dilated, or the supra-aortic branches are elongated and tortuous. In this article, we propose a pipeline using convolutional neural networks for the segmentation of the aortic arch from magnetic resonance images for further anatomy classification purpose. This pipeline is composed of two successive modules, dedicated to the localization and the accurate segmentation of the aortic arch and the origin of supra-aortic branches, respectively. These segmentations are then used to generate 3D models from which the anatomy and the type of the aortic arches can be characterized. A quantitative evaluation of this approach, carried out on various U-Net architectures and different optimizers, leads to satisfactory segmentation results, then allowing a reliable characterization.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"2 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aortic Arch Anatomy Characterization from MRA: A CNN-Based Segmentation Approach
Neurovascular pathologies are often treated with the help of imaging to guide catheters inside arteries. However, positioning a microcatheter into the aortic arch and threading it through blood vessels for embolization, mechanical thrombectomy or stenting is a challenging task. Indeed, adverse aortic arch anatomies are frequently encountered, especially when the aortic arch is dilated, or the supra-aortic branches are elongated and tortuous. In this article, we propose a pipeline using convolutional neural networks for the segmentation of the aortic arch from magnetic resonance images for further anatomy classification purpose. This pipeline is composed of two successive modules, dedicated to the localization and the accurate segmentation of the aortic arch and the origin of supra-aortic branches, respectively. These segmentations are then used to generate 3D models from which the anatomy and the type of the aortic arches can be characterized. A quantitative evaluation of this approach, carried out on various U-Net architectures and different optimizers, leads to satisfactory segmentation results, then allowing a reliable characterization.