网格湍流下翼尖涡的发展

Kamal Ben Miloud, Marouen Dghim, H. Fellouah, M. Ferchichi
{"title":"网格湍流下翼尖涡的发展","authors":"Kamal Ben Miloud, Marouen Dghim, H. Fellouah, M. Ferchichi","doi":"10.1115/FEDSM2018-83478","DOIUrl":null,"url":null,"abstract":"The interaction of a NACA 0012 wingtip vortex with a grid-generated flow was investigated in this paper. The experiments were conducted in the near and mid-wakes regions at three free stream turbulence (FST) levels of 0.5% (empty wind tunnel), 3% and 6%, and at two Reynolds numbers, based on the wing chord length, of 2 × 105 and 3 × 105. Stereoscopic Particle Image Velocimetry (SPIV) and hot wire measurements were carried out at four downstream positions, namely x/c = 0.5, 2.5, 5 and 7. Streamwise velocity contours showed that the wingtip vortex decayed with increased FST and downstream distance. In the vortex core region, the streamwise velocity decelerated while the vortex adopted a wake-like profile. FST was found to decrease the vortex circulation, to increase the vortex radius, and to increase the vortex meandering amplitude. By increasing the Reynolds number, the grid cases showed a small variation of the vortex radius and vorticity peak, particularly at downstream positions of 5 and 7. With meandering correction, the turbulence level within the vortex core were found to be reduced as the artificial turbulence induced by the vortex meandering was removed.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wing Tip Vortex Development Under a Grid Generated Turbulent Flow\",\"authors\":\"Kamal Ben Miloud, Marouen Dghim, H. Fellouah, M. Ferchichi\",\"doi\":\"10.1115/FEDSM2018-83478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction of a NACA 0012 wingtip vortex with a grid-generated flow was investigated in this paper. The experiments were conducted in the near and mid-wakes regions at three free stream turbulence (FST) levels of 0.5% (empty wind tunnel), 3% and 6%, and at two Reynolds numbers, based on the wing chord length, of 2 × 105 and 3 × 105. Stereoscopic Particle Image Velocimetry (SPIV) and hot wire measurements were carried out at four downstream positions, namely x/c = 0.5, 2.5, 5 and 7. Streamwise velocity contours showed that the wingtip vortex decayed with increased FST and downstream distance. In the vortex core region, the streamwise velocity decelerated while the vortex adopted a wake-like profile. FST was found to decrease the vortex circulation, to increase the vortex radius, and to increase the vortex meandering amplitude. By increasing the Reynolds number, the grid cases showed a small variation of the vortex radius and vorticity peak, particularly at downstream positions of 5 and 7. With meandering correction, the turbulence level within the vortex core were found to be reduced as the artificial turbulence induced by the vortex meandering was removed.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了NACA 0012翼尖涡与网格流的相互作用。实验在近尾迹区和中尾迹区进行,FST水平分别为0.5%(空风洞)、3%和6%,雷诺数分别为2 × 105和3 × 105(基于翼弦长)。在x/c = 0.5、2.5、5和7四个下游位置进行立体粒子图像测速(SPIV)和热线测量。沿流速度曲线显示,翼尖涡随FST和下游距离的增加而衰减。在涡核区,沿流速度减慢,涡呈尾迹型。结果表明,FST能减小涡旋环流,增大涡旋半径,增大涡旋蜿蜒幅值。随着雷诺数的增加,网格情况下涡半径和涡度峰值变化较小,特别是在下游位置5和7。曲流校正后,由于消除了由曲流引起的人为湍流,降低了涡核内的湍流水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wing Tip Vortex Development Under a Grid Generated Turbulent Flow
The interaction of a NACA 0012 wingtip vortex with a grid-generated flow was investigated in this paper. The experiments were conducted in the near and mid-wakes regions at three free stream turbulence (FST) levels of 0.5% (empty wind tunnel), 3% and 6%, and at two Reynolds numbers, based on the wing chord length, of 2 × 105 and 3 × 105. Stereoscopic Particle Image Velocimetry (SPIV) and hot wire measurements were carried out at four downstream positions, namely x/c = 0.5, 2.5, 5 and 7. Streamwise velocity contours showed that the wingtip vortex decayed with increased FST and downstream distance. In the vortex core region, the streamwise velocity decelerated while the vortex adopted a wake-like profile. FST was found to decrease the vortex circulation, to increase the vortex radius, and to increase the vortex meandering amplitude. By increasing the Reynolds number, the grid cases showed a small variation of the vortex radius and vorticity peak, particularly at downstream positions of 5 and 7. With meandering correction, the turbulence level within the vortex core were found to be reduced as the artificial turbulence induced by the vortex meandering was removed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信