基于时空深度网络的鲁棒目标跟踪

Zhu Teng, Junliang Xing, Qiang Wang, Congyan Lang, Songhe Feng, Yi Jin
{"title":"基于时空深度网络的鲁棒目标跟踪","authors":"Zhu Teng, Junliang Xing, Qiang Wang, Congyan Lang, Songhe Feng, Yi Jin","doi":"10.1109/ICCV.2017.130","DOIUrl":null,"url":null,"abstract":"Recently deep neural networks have been widely employed to deal with the visual tracking problem. In this work, we present a new deep architecture which incorporates the temporal and spatial information to boost the tracking performance. Our deep architecture contains three networks, a Feature Net, a Temporal Net, and a Spatial Net. The Feature Net extracts general feature representations of the target. With these feature representations, the Temporal Net encodes the trajectory of the target and directly learns temporal correspondences to estimate the object state from a global perspective. Based on the learning results of the Temporal Net, the Spatial Net further refines the object tracking state using local spatial object information. Extensive experiments on four of the largest tracking benchmarks, including VOT2014, VOT2016, OTB50, and OTB100, demonstrate competing performance of the proposed tracker over a number of state-of-the-art algorithms.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"38 1","pages":"1153-1162"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Robust Object Tracking Based on Temporal and Spatial Deep Networks\",\"authors\":\"Zhu Teng, Junliang Xing, Qiang Wang, Congyan Lang, Songhe Feng, Yi Jin\",\"doi\":\"10.1109/ICCV.2017.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently deep neural networks have been widely employed to deal with the visual tracking problem. In this work, we present a new deep architecture which incorporates the temporal and spatial information to boost the tracking performance. Our deep architecture contains three networks, a Feature Net, a Temporal Net, and a Spatial Net. The Feature Net extracts general feature representations of the target. With these feature representations, the Temporal Net encodes the trajectory of the target and directly learns temporal correspondences to estimate the object state from a global perspective. Based on the learning results of the Temporal Net, the Spatial Net further refines the object tracking state using local spatial object information. Extensive experiments on four of the largest tracking benchmarks, including VOT2014, VOT2016, OTB50, and OTB100, demonstrate competing performance of the proposed tracker over a number of state-of-the-art algorithms.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"38 1\",\"pages\":\"1153-1162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

近年来,深度神经网络被广泛应用于处理视觉跟踪问题。在这项工作中,我们提出了一种新的深度架构,它结合了时间和空间信息来提高跟踪性能。我们的深层架构包含三个网络,一个特征网,一个时间网和一个空间网。特征网提取目标的一般特征表示。利用这些特征表示,时间网络对目标的轨迹进行编码,并直接学习时间对应,从全局角度估计目标的状态。在时态网学习结果的基础上,空间网利用局部空间目标信息进一步细化目标跟踪状态。在四个最大的跟踪基准(包括VOT2014、VOT2016、OTB50和OTB100)上进行了大量实验,证明了所提出的跟踪器在许多最先进算法上的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Object Tracking Based on Temporal and Spatial Deep Networks
Recently deep neural networks have been widely employed to deal with the visual tracking problem. In this work, we present a new deep architecture which incorporates the temporal and spatial information to boost the tracking performance. Our deep architecture contains three networks, a Feature Net, a Temporal Net, and a Spatial Net. The Feature Net extracts general feature representations of the target. With these feature representations, the Temporal Net encodes the trajectory of the target and directly learns temporal correspondences to estimate the object state from a global perspective. Based on the learning results of the Temporal Net, the Spatial Net further refines the object tracking state using local spatial object information. Extensive experiments on four of the largest tracking benchmarks, including VOT2014, VOT2016, OTB50, and OTB100, demonstrate competing performance of the proposed tracker over a number of state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信