交替群和经典群的McKay图

M. Liebeck, A. Shalev, P. Tiep
{"title":"交替群和经典群的McKay图","authors":"M. Liebeck, A. Shalev, P. Tiep","doi":"10.1090/TRAN/8395","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite group, and $\\alpha$ a nontrivial character of $G$. The McKay graph $\\mathcal{M}(G,\\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\\chi_1$ to $\\chi_2$ if $\\chi_2$ is a constituent of $\\alpha\\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\\hbox{diam}\\,{\\mathcal M}(G,\\alpha) \\le C\\frac{\\log |\\mathsf{A}_n|}{\\log \\alpha(1)}$ for all nontrivial irreducible characters $\\alpha$ of $\\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"McKay graphs for alternating and classical groups\",\"authors\":\"M. Liebeck, A. Shalev, P. Tiep\",\"doi\":\"10.1090/TRAN/8395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite group, and $\\\\alpha$ a nontrivial character of $G$. The McKay graph $\\\\mathcal{M}(G,\\\\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\\\\chi_1$ to $\\\\chi_2$ if $\\\\chi_2$ is a constituent of $\\\\alpha\\\\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\\\\hbox{diam}\\\\,{\\\\mathcal M}(G,\\\\alpha) \\\\le C\\\\frac{\\\\log |\\\\mathsf{A}_n|}{\\\\log \\\\alpha(1)}$ for all nontrivial irreducible characters $\\\\alpha$ of $\\\\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TRAN/8395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$G$是一个有限群,$\alpha$是$G$的一个非平凡特征。McKay图$\mathcal{M}(G,\alpha)$以$G$的不可约特征为顶点,如果$\chi_2$是$\alpha\chi_1$的一个组成部分,则有一条从$\chi_1$到$\chi_2$的边。我们研究了有限简单群的McKay图的直径$G$。对于交替群,我们证明了[LST]中的一个猜想:存在一个绝对常数$C$,使得$\hbox{diam}\,{\mathcal M}(G,\alpha) \le C\frac{\log |\mathsf{A}_n|}{\log \alpha(1)}$对于$\mathsf{A}_n$的所有非平凡不可约字符$\alpha$。对于秩为$r$的辛型或正交型的经典群,我们在所有非平凡McKay图的直径上建立了一个线性上界$Cr$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
McKay graphs for alternating and classical groups
Let $G$ be a finite group, and $\alpha$ a nontrivial character of $G$. The McKay graph $\mathcal{M}(G,\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\chi_1$ to $\chi_2$ if $\chi_2$ is a constituent of $\alpha\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\hbox{diam}\,{\mathcal M}(G,\alpha) \le C\frac{\log |\mathsf{A}_n|}{\log \alpha(1)}$ for all nontrivial irreducible characters $\alpha$ of $\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信