{"title":"交替群和经典群的McKay图","authors":"M. Liebeck, A. Shalev, P. Tiep","doi":"10.1090/TRAN/8395","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite group, and $\\alpha$ a nontrivial character of $G$. The McKay graph $\\mathcal{M}(G,\\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\\chi_1$ to $\\chi_2$ if $\\chi_2$ is a constituent of $\\alpha\\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\\hbox{diam}\\,{\\mathcal M}(G,\\alpha) \\le C\\frac{\\log |\\mathsf{A}_n|}{\\log \\alpha(1)}$ for all nontrivial irreducible characters $\\alpha$ of $\\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"McKay graphs for alternating and classical groups\",\"authors\":\"M. Liebeck, A. Shalev, P. Tiep\",\"doi\":\"10.1090/TRAN/8395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite group, and $\\\\alpha$ a nontrivial character of $G$. The McKay graph $\\\\mathcal{M}(G,\\\\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\\\\chi_1$ to $\\\\chi_2$ if $\\\\chi_2$ is a constituent of $\\\\alpha\\\\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\\\\hbox{diam}\\\\,{\\\\mathcal M}(G,\\\\alpha) \\\\le C\\\\frac{\\\\log |\\\\mathsf{A}_n|}{\\\\log \\\\alpha(1)}$ for all nontrivial irreducible characters $\\\\alpha$ of $\\\\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TRAN/8395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $G$ be a finite group, and $\alpha$ a nontrivial character of $G$. The McKay graph $\mathcal{M}(G,\alpha)$ has the irreducible characters of $G$ as vertices, with an edge from $\chi_1$ to $\chi_2$ if $\chi_2$ is a constituent of $\alpha\chi_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\hbox{diam}\,{\mathcal M}(G,\alpha) \le C\frac{\log |\mathsf{A}_n|}{\log \alpha(1)}$ for all nontrivial irreducible characters $\alpha$ of $\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.