具有幂律相关缺陷的三维无序Ising模型的温度标度分析

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
S. Kazmin, W. Janke
{"title":"具有幂律相关缺陷的三维无序Ising模型的温度标度分析","authors":"S. Kazmin, W. Janke","doi":"10.5488/CMP.26.13201","DOIUrl":null,"url":null,"abstract":"We consider the three-dimensional site-diluted Ising model with power-law correlated defects and study the critical behavior of the second-moment correlation length and the magnetic susceptibility in the high-temperature phase. By comparing, for various defect correlation strengths, the extracted critical exponents ν and γ with the results of our previous finite-size scaling study, we consolidate the exponent estimates.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature scaling analysis of the 3D disordered Ising model with power-law correlated defects\",\"authors\":\"S. Kazmin, W. Janke\",\"doi\":\"10.5488/CMP.26.13201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the three-dimensional site-diluted Ising model with power-law correlated defects and study the critical behavior of the second-moment correlation length and the magnetic susceptibility in the high-temperature phase. By comparing, for various defect correlation strengths, the extracted critical exponents ν and γ with the results of our previous finite-size scaling study, we consolidate the exponent estimates.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.13201\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.13201","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有幂律相关缺陷的三维位置稀释Ising模型,研究了高温相中二阶矩相关长度和磁化率的临界行为。通过比较,对于各种缺陷相关强度,提取的临界指数ν和γ与我们之前的有限尺寸缩放研究结果,我们巩固了指数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature scaling analysis of the 3D disordered Ising model with power-law correlated defects
We consider the three-dimensional site-diluted Ising model with power-law correlated defects and study the critical behavior of the second-moment correlation length and the magnetic susceptibility in the high-temperature phase. By comparing, for various defect correlation strengths, the extracted critical exponents ν and γ with the results of our previous finite-size scaling study, we consolidate the exponent estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信