关于有动力玻尔不等式

IF 0.9 4区 数学 Q2 Mathematics
I. Kayumov, S. Ponnusamy
{"title":"关于有动力玻尔不等式","authors":"I. Kayumov, S. Ponnusamy","doi":"10.5186/AASFM.2019.4416","DOIUrl":null,"url":null,"abstract":"The object of this paper is to study the powered Bohr radius $\\rho_p$, $p \\in (1,2)$, of analytic functions $f(z)=\\sum_{k=0}^{\\infty} a_kz^k$ and such that $|f(z)|<1$ defined on the unit disk $|z|<1$. More precisely, if $M_p^f (r)=\\sum_{k=0}^\\infty |a_k|^p r^k$, then we show that $M_p^f (r)\\leq 1$ for $r \\leq r_p$ where $r_\\rho$ is the powered Bohr radius for conformal automorphisms of the unit disk. This answers the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our approach is also stated, including an asymptotically sharp form of one of the results of Djakov and Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings in $|z|<1$. Finally, we conclude by stating the Bohr radius for the class of Bieberbach-Eilenberg functions.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"On a powered Bohr inequality\",\"authors\":\"I. Kayumov, S. Ponnusamy\",\"doi\":\"10.5186/AASFM.2019.4416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of this paper is to study the powered Bohr radius $\\\\rho_p$, $p \\\\in (1,2)$, of analytic functions $f(z)=\\\\sum_{k=0}^{\\\\infty} a_kz^k$ and such that $|f(z)|<1$ defined on the unit disk $|z|<1$. More precisely, if $M_p^f (r)=\\\\sum_{k=0}^\\\\infty |a_k|^p r^k$, then we show that $M_p^f (r)\\\\leq 1$ for $r \\\\leq r_p$ where $r_\\\\rho$ is the powered Bohr radius for conformal automorphisms of the unit disk. This answers the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our approach is also stated, including an asymptotically sharp form of one of the results of Djakov and Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings in $|z|<1$. Finally, we conclude by stating the Bohr radius for the class of Bieberbach-Eilenberg functions.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4416\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4416","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 65

摘要

本文的目的是研究在单位圆盘$|z|<1$上定义的解析函数$f(z)=\sum_{k=0}^{\infty} a_kz^k$和$|f(z)|<1$的幂玻尔半径$\rho_p$, $p \in (1,2)$。更准确地说,如果$M_p^f (r)=\sum_{k=0}^\infty |a_k|^p r^k$,那么我们证明$M_p^f (r)\leq 1$对于$r \leq r_p$,其中$r_\rho$是单位圆盘的共形自同构的动力玻尔半径。这回答了Djakov和Ramanujan在2000年提出的开放性问题。我们的方法的其他几个结果也被陈述,包括Djakov和Ramanujan的结果之一的渐近尖锐形式。此外,我们还考虑了$|z|<1$中保感调和映射的一个类似问题。最后,我们给出了Bieberbach-Eilenberg函数类的玻尔半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a powered Bohr inequality
The object of this paper is to study the powered Bohr radius $\rho_p$, $p \in (1,2)$, of analytic functions $f(z)=\sum_{k=0}^{\infty} a_kz^k$ and such that $|f(z)|<1$ defined on the unit disk $|z|<1$. More precisely, if $M_p^f (r)=\sum_{k=0}^\infty |a_k|^p r^k$, then we show that $M_p^f (r)\leq 1$ for $r \leq r_p$ where $r_\rho$ is the powered Bohr radius for conformal automorphisms of the unit disk. This answers the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our approach is also stated, including an asymptotically sharp form of one of the results of Djakov and Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings in $|z|<1$. Finally, we conclude by stating the Bohr radius for the class of Bieberbach-Eilenberg functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信