代数公式的最优深度约简

Hervé Fournier, N. Limaye, Guillaume Malod, S. Srinivasan, Sébastien Tavenas
{"title":"代数公式的最优深度约简","authors":"Hervé Fournier, N. Limaye, Guillaume Malod, S. Srinivasan, Sébastien Tavenas","doi":"10.48550/arXiv.2302.06984","DOIUrl":null,"url":null,"abstract":"Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending on the degree of the polynomial computed by the algebraic formula. Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula of depth O(log d) and size poly(s). Our proof shows that this result also holds in the highly restricted setting of monotone, non-commutative algebraic formulas. This improves on previous results in the regime when d is small (i.e., d<<s). In particular, for the setting of d=O(log s), along with a result of Raz (STOC 2010, JACM 2013), our result implies the same depth reduction even for inhomogeneous formulas. This is particularly interesting in light of recent algebraic formula lower bounds, which work precisely in this ``low-degree\"and ``low-depth\"setting. We also show that these results cannot be improved in the monotone setting, even for commutative formulas.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"1962 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Optimal Depth-Reductions for Algebraic Formulas\",\"authors\":\"Hervé Fournier, N. Limaye, Guillaume Malod, S. Srinivasan, Sébastien Tavenas\",\"doi\":\"10.48550/arXiv.2302.06984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending on the degree of the polynomial computed by the algebraic formula. Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula of depth O(log d) and size poly(s). Our proof shows that this result also holds in the highly restricted setting of monotone, non-commutative algebraic formulas. This improves on previous results in the regime when d is small (i.e., d<<s). In particular, for the setting of d=O(log s), along with a result of Raz (STOC 2010, JACM 2013), our result implies the same depth reduction even for inhomogeneous formulas. This is particularly interesting in light of recent algebraic formula lower bounds, which work precisely in this ``low-degree\\\"and ``low-depth\\\"setting. We also show that these results cannot be improved in the monotone setting, even for commutative formulas.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"1962 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.06984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.06984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Brent, Kuck和Maruyama的经典结果(IEEE译)。计算机1973)和Brent (JACM 1974)表明,任何大小为s的代数公式都可以转换为深度为O(log s)的代数公式,而只需要在大小上增加一个多项式。在本文中,我们考虑这个结果的一个细粒度版本,这取决于由代数公式计算的多项式的程度。给定一个大小为s的齐次代数公式来计算阶数为d的多项式P,我们证明P也可以由深度为O(log d)和大小为poly(s)的(无界扇入)代数公式来计算。我们的证明表明,这一结果在单调非交换代数公式的高度限制情况下也成立。当d很小(即d<本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Towards Optimal Depth-Reductions for Algebraic Formulas
Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending on the degree of the polynomial computed by the algebraic formula. Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show that P can also be computed by an (unbounded fan-in) algebraic formula of depth O(log d) and size poly(s). Our proof shows that this result also holds in the highly restricted setting of monotone, non-commutative algebraic formulas. This improves on previous results in the regime when d is small (i.e., d<
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信