Shahid Karim, Ye Zhang, Shoulin Yin, Irfana Bibi, Ali Anwar Brohi
{"title":"光学遥感图像中目标检测的综述与挑战","authors":"Shahid Karim, Ye Zhang, Shoulin Yin, Irfana Bibi, Ali Anwar Brohi","doi":"10.3233/mgs-200330","DOIUrl":null,"url":null,"abstract":"Traditional object detection algorithms and strategies are difficult to meet the requirements of data processing efficiency, performance, speed and intelligence in object detection. Through the study and imitation of the cognitive ability of the brain, deep learning can analyze and process the data features. It has a strong ability of visualization and becomes the mainstream algorithm of current object detection applications. Firstly, we have discussed the developments of traditional object detection methods. Secondly, the frameworks of object detection (e.g. Region-based CNN (R-CNN), Spatial Pyramid Pooling Network (SPP-NET), Fast-RCNN and Faster-RCNN) which combine region proposals and convolutional neural networks (CNNs) are briefly characterized for optical remote sensing applications. You only look once (YOLO) algorithm is the representative of the object detection frameworks (e.g. YOLO and Single Shot MultiBox Detector (SSD)) which transforms the object detection into a regression problem. The limitations of remote sensing images and object detectors have been highlighted and discussed. The feasibility and limitations of these approaches will lead researchers to prudently select appropriate image enhancements. Finally, the problems of object detection algorithms in deep learning are summarized and the future recommendations are also conferred.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":"1 1","pages":"227-243"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A brief review and challenges of object detection in optical remote sensing imagery\",\"authors\":\"Shahid Karim, Ye Zhang, Shoulin Yin, Irfana Bibi, Ali Anwar Brohi\",\"doi\":\"10.3233/mgs-200330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional object detection algorithms and strategies are difficult to meet the requirements of data processing efficiency, performance, speed and intelligence in object detection. Through the study and imitation of the cognitive ability of the brain, deep learning can analyze and process the data features. It has a strong ability of visualization and becomes the mainstream algorithm of current object detection applications. Firstly, we have discussed the developments of traditional object detection methods. Secondly, the frameworks of object detection (e.g. Region-based CNN (R-CNN), Spatial Pyramid Pooling Network (SPP-NET), Fast-RCNN and Faster-RCNN) which combine region proposals and convolutional neural networks (CNNs) are briefly characterized for optical remote sensing applications. You only look once (YOLO) algorithm is the representative of the object detection frameworks (e.g. YOLO and Single Shot MultiBox Detector (SSD)) which transforms the object detection into a regression problem. The limitations of remote sensing images and object detectors have been highlighted and discussed. The feasibility and limitations of these approaches will lead researchers to prudently select appropriate image enhancements. Finally, the problems of object detection algorithms in deep learning are summarized and the future recommendations are also conferred.\",\"PeriodicalId\":43659,\"journal\":{\"name\":\"Multiagent and Grid Systems\",\"volume\":\"1 1\",\"pages\":\"227-243\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiagent and Grid Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mgs-200330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-200330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A brief review and challenges of object detection in optical remote sensing imagery
Traditional object detection algorithms and strategies are difficult to meet the requirements of data processing efficiency, performance, speed and intelligence in object detection. Through the study and imitation of the cognitive ability of the brain, deep learning can analyze and process the data features. It has a strong ability of visualization and becomes the mainstream algorithm of current object detection applications. Firstly, we have discussed the developments of traditional object detection methods. Secondly, the frameworks of object detection (e.g. Region-based CNN (R-CNN), Spatial Pyramid Pooling Network (SPP-NET), Fast-RCNN and Faster-RCNN) which combine region proposals and convolutional neural networks (CNNs) are briefly characterized for optical remote sensing applications. You only look once (YOLO) algorithm is the representative of the object detection frameworks (e.g. YOLO and Single Shot MultiBox Detector (SSD)) which transforms the object detection into a regression problem. The limitations of remote sensing images and object detectors have been highlighted and discussed. The feasibility and limitations of these approaches will lead researchers to prudently select appropriate image enhancements. Finally, the problems of object detection algorithms in deep learning are summarized and the future recommendations are also conferred.