快速鲁棒的原生类型矢量就地排序

Mark Blacher, Joachim Giesen, L. Kuehne
{"title":"快速鲁棒的原生类型矢量就地排序","authors":"Mark Blacher, Joachim Giesen, L. Kuehne","doi":"10.4230/LIPIcs.SEA.2021.3","DOIUrl":null,"url":null,"abstract":"Modern CPUs provide single instruction-multiple data (SIMD) instructions. SIMD instructions process several elements of a primitive data type simultaneously in fixed-size vectors. Classical sorting algorithms are not directly expressible in SIMD instructions. Accelerating sorting algorithms with SIMD instruction is therefore a creative endeavor. A promising approach for sorting with SIMD instructions is to use sorting networks for small arrays and Quicksort for large arrays. In this paper we improve vectorization techniques for sorting networks and Quicksort. In particular, we show how to use the full capacity of vector registers in sorting networks and how to make vectorized Quicksort robust with respect to different key distributions. To demonstrate the performance of our techniques we implement an in-place hybrid sorting algorithm for the data type int with AVX2 intrinsics. Our implementation is at least 30% faster than state-of-the-art high-performance sorting alternatives. 2012 ACM Subject Classification Theory of computation → Sorting and searching","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"1 1","pages":"3:1-3:16"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast and Robust Vectorized In-Place Sorting of Primitive Types\",\"authors\":\"Mark Blacher, Joachim Giesen, L. Kuehne\",\"doi\":\"10.4230/LIPIcs.SEA.2021.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern CPUs provide single instruction-multiple data (SIMD) instructions. SIMD instructions process several elements of a primitive data type simultaneously in fixed-size vectors. Classical sorting algorithms are not directly expressible in SIMD instructions. Accelerating sorting algorithms with SIMD instruction is therefore a creative endeavor. A promising approach for sorting with SIMD instructions is to use sorting networks for small arrays and Quicksort for large arrays. In this paper we improve vectorization techniques for sorting networks and Quicksort. In particular, we show how to use the full capacity of vector registers in sorting networks and how to make vectorized Quicksort robust with respect to different key distributions. To demonstrate the performance of our techniques we implement an in-place hybrid sorting algorithm for the data type int with AVX2 intrinsics. Our implementation is at least 30% faster than state-of-the-art high-performance sorting alternatives. 2012 ACM Subject Classification Theory of computation → Sorting and searching\",\"PeriodicalId\":9448,\"journal\":{\"name\":\"Bulletin of the Society of Sea Water Science, Japan\",\"volume\":\"1 1\",\"pages\":\"3:1-3:16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Society of Sea Water Science, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SEA.2021.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2021.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现代cpu提供单指令多数据(SIMD)指令。SIMD指令在固定大小的向量中同时处理基本数据类型的多个元素。经典的排序算法不能在SIMD指令中直接表示。因此,用SIMD指令加速排序算法是一项创造性的努力。使用SIMD指令进行排序的一种很有前途的方法是对小数组使用排序网络,对大数组使用快速排序。本文改进了排序网络和快速排序的矢量化技术。特别是,我们展示了如何在排序网络中使用向量寄存器的全部容量,以及如何使矢量快速排序对于不同的键分布具有鲁棒性。为了演示我们的技术的性能,我们使用AVX2 intrinsic为数据类型int实现了一个就地混合排序算法。我们的实现比最先进的高性能排序方案至少快30%。2012 ACM学科分类计算理论→排序与检索
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Robust Vectorized In-Place Sorting of Primitive Types
Modern CPUs provide single instruction-multiple data (SIMD) instructions. SIMD instructions process several elements of a primitive data type simultaneously in fixed-size vectors. Classical sorting algorithms are not directly expressible in SIMD instructions. Accelerating sorting algorithms with SIMD instruction is therefore a creative endeavor. A promising approach for sorting with SIMD instructions is to use sorting networks for small arrays and Quicksort for large arrays. In this paper we improve vectorization techniques for sorting networks and Quicksort. In particular, we show how to use the full capacity of vector registers in sorting networks and how to make vectorized Quicksort robust with respect to different key distributions. To demonstrate the performance of our techniques we implement an in-place hybrid sorting algorithm for the data type int with AVX2 intrinsics. Our implementation is at least 30% faster than state-of-the-art high-performance sorting alternatives. 2012 ACM Subject Classification Theory of computation → Sorting and searching
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信