超级管挤压喷嘴应力指标及应力强化系数的解析测定

Lv Feng, Zhou Gengyu, Qian Haiyang
{"title":"超级管挤压喷嘴应力指标及应力强化系数的解析测定","authors":"Lv Feng, Zhou Gengyu, Qian Haiyang","doi":"10.1115/PVP2018-85144","DOIUrl":null,"url":null,"abstract":"The super pipe nozzles in nuclear power plants are usually designed to be in compliance with the requirements of Class 2 piping of Section III of the ASME Boiler and Pressure Vessel Code. The stress indices B2 and stress intensification factor i are required for the stress evaluation. In the past two decades, the hot extrusion forming technology has been widely used to manufacture those nozzles, instead of traditional insert weldolets. However, previous extruded nozzle stress analyses have shown B2 that the calculated stresses may exceed the limits in some working conditions. The objective of present study is to determine the stress indices and stress intensification factor for an extruded nozzle of the supper pipe by the finite element method and to evaluate the conservatism of those factors from the ASME Code formulae. In this paper, a three-dimensional finite element model of an extruded nozzle is developed. Four load cases are considered, which are corresponding to an in-plane bending moment and an out-plane bending moment applied at the run pipe side and at the branch pipe side, respectively. The magnitude of bending moment is assumed to be 1000Nm. The stress indices B2r, B2b, C2r, C2b, K2r and K2b, where the subscript r and b refer to the run pipe and B2r the branch pipe, are calculated based on the finite element analysis results. The stress intensification factor ir and ib are determined by the empirical formula: ir = C2r*K2r/2 and ib = C2b*K2b/2. Further, the developed factors are compared with those calculated from the ASME code formulae. It is found that the stress indices B2r and B2b obtained from the linear elastic finite element analysis are conservative. Currently, the values of B2r and B2b gained from the ASME code formulae are more appropriate for the stress evolution. The stress intensification factors ir and ib obtained from the analytical determination are lower than those calculated from the ASME code formula. For the extrude nozzle studied, the factor ir decreases 30% and the factor ib decreases about 3.3%.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Determination of Stress Indices and Stress Intensification Factor for an Extruded Nozzle of Super Pipe\",\"authors\":\"Lv Feng, Zhou Gengyu, Qian Haiyang\",\"doi\":\"10.1115/PVP2018-85144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The super pipe nozzles in nuclear power plants are usually designed to be in compliance with the requirements of Class 2 piping of Section III of the ASME Boiler and Pressure Vessel Code. The stress indices B2 and stress intensification factor i are required for the stress evaluation. In the past two decades, the hot extrusion forming technology has been widely used to manufacture those nozzles, instead of traditional insert weldolets. However, previous extruded nozzle stress analyses have shown B2 that the calculated stresses may exceed the limits in some working conditions. The objective of present study is to determine the stress indices and stress intensification factor for an extruded nozzle of the supper pipe by the finite element method and to evaluate the conservatism of those factors from the ASME Code formulae. In this paper, a three-dimensional finite element model of an extruded nozzle is developed. Four load cases are considered, which are corresponding to an in-plane bending moment and an out-plane bending moment applied at the run pipe side and at the branch pipe side, respectively. The magnitude of bending moment is assumed to be 1000Nm. The stress indices B2r, B2b, C2r, C2b, K2r and K2b, where the subscript r and b refer to the run pipe and B2r the branch pipe, are calculated based on the finite element analysis results. The stress intensification factor ir and ib are determined by the empirical formula: ir = C2r*K2r/2 and ib = C2b*K2b/2. Further, the developed factors are compared with those calculated from the ASME code formulae. It is found that the stress indices B2r and B2b obtained from the linear elastic finite element analysis are conservative. Currently, the values of B2r and B2b gained from the ASME code formulae are more appropriate for the stress evolution. The stress intensification factors ir and ib obtained from the analytical determination are lower than those calculated from the ASME code formula. For the extrude nozzle studied, the factor ir decreases 30% and the factor ib decreases about 3.3%.\",\"PeriodicalId\":23651,\"journal\":{\"name\":\"Volume 6B: Materials and Fabrication\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-85144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-85144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核电站的超级管喷嘴通常按照ASME锅炉压力容器规范第三节第2类管道的要求进行设计。应力评价需要应力指数B2和应力强化系数i。在过去的二十年中,热挤压成形技术已被广泛用于制造这些喷嘴,而不是传统的插入焊缝。然而,先前的挤压喷嘴应力分析表明,在某些工作条件下,计算出的应力可能超过极限。本文的研究目的是用有限元法确定超管挤压喷嘴的应力指数和应力强化系数,并根据ASME规范的计算公式评价这些系数的保守性。本文建立了挤压喷管的三维有限元模型。考虑了四种荷载情况,分别对应于在行管侧和支管侧施加的面内弯矩和面外弯矩。假设弯矩的大小为1000Nm。根据有限元分析结果计算应力指标B2r、B2b、C2r、C2b、K2r、K2b,其中下标r、b为下标管,B2r为支管。应力强化系数ir和ib由经验公式确定:ir = C2r*K2r/2, ib = C2b*K2b/2。并与ASME规范的计算公式进行了比较。发现线弹性有限元分析得到的应力指标B2r和B2b是保守的。目前,由ASME规范公式得到的B2r和B2b值更适合于应力演化。分析测定得到的应力增强系数ir和ib小于ASME规范公式计算的应力增强系数。对于所研究的挤出喷嘴,因子ir降低了30%,因子ib降低了约3.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Determination of Stress Indices and Stress Intensification Factor for an Extruded Nozzle of Super Pipe
The super pipe nozzles in nuclear power plants are usually designed to be in compliance with the requirements of Class 2 piping of Section III of the ASME Boiler and Pressure Vessel Code. The stress indices B2 and stress intensification factor i are required for the stress evaluation. In the past two decades, the hot extrusion forming technology has been widely used to manufacture those nozzles, instead of traditional insert weldolets. However, previous extruded nozzle stress analyses have shown B2 that the calculated stresses may exceed the limits in some working conditions. The objective of present study is to determine the stress indices and stress intensification factor for an extruded nozzle of the supper pipe by the finite element method and to evaluate the conservatism of those factors from the ASME Code formulae. In this paper, a three-dimensional finite element model of an extruded nozzle is developed. Four load cases are considered, which are corresponding to an in-plane bending moment and an out-plane bending moment applied at the run pipe side and at the branch pipe side, respectively. The magnitude of bending moment is assumed to be 1000Nm. The stress indices B2r, B2b, C2r, C2b, K2r and K2b, where the subscript r and b refer to the run pipe and B2r the branch pipe, are calculated based on the finite element analysis results. The stress intensification factor ir and ib are determined by the empirical formula: ir = C2r*K2r/2 and ib = C2b*K2b/2. Further, the developed factors are compared with those calculated from the ASME code formulae. It is found that the stress indices B2r and B2b obtained from the linear elastic finite element analysis are conservative. Currently, the values of B2r and B2b gained from the ASME code formulae are more appropriate for the stress evolution. The stress intensification factors ir and ib obtained from the analytical determination are lower than those calculated from the ASME code formula. For the extrude nozzle studied, the factor ir decreases 30% and the factor ib decreases about 3.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信