关于Gabor g坐标系和算子的傅里叶级数

Eirik Skrettingland
{"title":"关于Gabor g坐标系和算子的傅里叶级数","authors":"Eirik Skrettingland","doi":"10.4064/SM191115-24-9","DOIUrl":null,"url":null,"abstract":"We show that Hilbert-Schmidt operators can be used to define frame-like structures for $L^2(\\mathbb{R})$ over lattices in $\\mathbb{R}^{2d}$ that include multi-window Gabor frames as a special case. These structures, called Gabor g-frames, are shown to share many properties of Gabor frames, including a Janssen representation and Wexler-Raz biorthogonality conditions. A central part of our analysis is a notion of Fourier series of periodic operators based on earlier work by Feichtinger and Kozek, where we show in particular a Poisson summation formula for trace class operators. By choosing operators from certain Banach subspaces of the Hilbert Schmidt operators, Gabor g-frames give equivalent norms for modulation spaces in terms of weighted $\\ell^p$-norms of an associated sequence, as previously shown for localization operators by D\\\"orfler, Feichtinger and Gr\\\"ochenig.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On Gabor g-frames and Fourier series of operators\",\"authors\":\"Eirik Skrettingland\",\"doi\":\"10.4064/SM191115-24-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that Hilbert-Schmidt operators can be used to define frame-like structures for $L^2(\\\\mathbb{R})$ over lattices in $\\\\mathbb{R}^{2d}$ that include multi-window Gabor frames as a special case. These structures, called Gabor g-frames, are shown to share many properties of Gabor frames, including a Janssen representation and Wexler-Raz biorthogonality conditions. A central part of our analysis is a notion of Fourier series of periodic operators based on earlier work by Feichtinger and Kozek, where we show in particular a Poisson summation formula for trace class operators. By choosing operators from certain Banach subspaces of the Hilbert Schmidt operators, Gabor g-frames give equivalent norms for modulation spaces in terms of weighted $\\\\ell^p$-norms of an associated sequence, as previously shown for localization operators by D\\\\\\\"orfler, Feichtinger and Gr\\\\\\\"ochenig.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/SM191115-24-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/SM191115-24-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们证明了Hilbert-Schmidt算子可以用来定义$L^2(\mathbb{R})$在$\mathbb{R}^{2d}$晶格上的类框架结构,其中包含多窗口Gabor框架作为特殊情况。这些结构被称为Gabor g框架,具有Gabor框架的许多特性,包括Janssen表示和Wexler-Raz双正交条件。我们分析的核心部分是基于Feichtinger和Kozek早期工作的周期算子的傅里叶级数的概念,在那里我们特别展示了迹类算子的泊松求和公式。通过选择操作符从希耳伯特施密特的某些巴拿赫子空间操作符,伽柏g-frames给调制空间等效准则的权重\魔法^ p规范美元的序列相关,正如前面所示为本地化运营商D \ ochenig“orfler Feichtinger和Gr \”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Gabor g-frames and Fourier series of operators
We show that Hilbert-Schmidt operators can be used to define frame-like structures for $L^2(\mathbb{R})$ over lattices in $\mathbb{R}^{2d}$ that include multi-window Gabor frames as a special case. These structures, called Gabor g-frames, are shown to share many properties of Gabor frames, including a Janssen representation and Wexler-Raz biorthogonality conditions. A central part of our analysis is a notion of Fourier series of periodic operators based on earlier work by Feichtinger and Kozek, where we show in particular a Poisson summation formula for trace class operators. By choosing operators from certain Banach subspaces of the Hilbert Schmidt operators, Gabor g-frames give equivalent norms for modulation spaces in terms of weighted $\ell^p$-norms of an associated sequence, as previously shown for localization operators by D\"orfler, Feichtinger and Gr\"ochenig.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信